Advertisements
Advertisements
рдкреНрд░рд╢реНрди
If `sec theta + tan theta = x," find the value of " sec theta`
рдЙрддреНрддрд░
We have ,
`sec theta + tan theta = x ............(i)`
⇒ `(sec theta + tan theta )/1 xx (sec theta- tan theta )/(sec theta - tan theta ) = x`
`⇒ (sec ^2 theta - tan^2 theta )/( sec theta - tan theta) = x`
`⇒1/ (sec theta - tan theta ) = x/1`
`⇒ sec theta - tan theta = 1/x ` ............(ii)
ЁЭР┤ЁЭССЁЭССЁЭСЦЁЭСЫЁЭСФ (ЁЭСЦ)ЁЭСОЁЭСЫЁЭСС (ЁЭСЦЁЭСЦ), ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб
`2 sec theta = x+ 1/x`
⇒` 2 sec theta = (x^2+1)/x`
∴ `sec theta = (x^2 +1)/(2x)`
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
`(1+tan^2A)/(1+cot^2A)` = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cosec θ – cot θ)^2 = (1-cos theta)/(1 + cos theta)`
Prove the following trigonometric identities.
`1/(1 + sin A) + 1/(1 - sin A) = 2sec^2 A`
Prove the following identities:
`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`
If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
Prove the following identity :
`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove the following identities.
tan4 θ + tan2 θ = sec4 θ – sec2 θ
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ