рд╣рд┐рдВрджреА

If `Sec Theta + Tan Theta = X," Find the Value of " Sec Theta` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

If `sec theta + tan theta = x,"  find the value of " sec theta`

рдЙрддреНрддрд░

We have , 

`sec theta + tan theta = x    ............(i)`

⇒ `(sec theta + tan theta )/1 xx (sec theta- tan theta )/(sec theta - tan theta ) = x`

`⇒  (sec ^2 theta - tan^2 theta )/( sec theta - tan theta) = x`

`⇒1/ (sec theta - tan theta ) = x/1`

`⇒ sec theta - tan theta = 1/x `              ............(ii)

ЁЭР┤ЁЭССЁЭССЁЭСЦЁЭСЫЁЭСФ (ЁЭСЦ)ЁЭСОЁЭСЫЁЭСС (ЁЭСЦЁЭСЦ), ЁЭСдЁЭСТ ЁЭСФЁЭСТЁЭСб

`2 sec theta = x+ 1/x`

⇒` 2 sec theta = (x^2+1)/x`

∴ `sec theta = (x^2 +1)/(2x)` 

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 3

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 3 | Q 37

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cosec  θ  – cot θ)^2 = (1-cos theta)/(1 + cos theta)`


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


If `( tan theta + sin theta ) = m and ( tan theta - sin theta ) = n " prove that "(m^2-n^2)^2 = 16 mn .`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


If 5 `tan theta = 4,"write the value of" ((cos theta - sintheta))/(( cos theta + sin theta))`


If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


Prove the following identity  :

`(1 + cotA)^2 + (1 - cotA)^2 = 2cosec^2A`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove the following identities.

tan4 θ + tan2 θ = sec4 θ – sec2 θ


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Prove that sec2θ + cosec2θ = sec2θ × cosec2θ


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×