Advertisements
Advertisements
प्रश्न
Prove that (sec θ + tan θ) (1 – sin θ) = cos θ
उत्तर
(sec θ + tan θ) (1 – sin θ) = cos θ
L.H.S. (sec θ + tan θ) (1 – sin θ)
= `(1/cosθ + sinθ/cosθ)(1 - sinθ)`
= `((1 + sinθ)(1 - sinθ))/cosθ`
= `(1 - sin^2θ)/cosθ`
= `(sin^2θ + cos^2θ - sin^2θ)/cosθ`
= `cos^2θ/cosθ`
= cos θ
= R.H.S.
Hence Proved.
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities.
(sec A + tan A − 1) (sec A − tan A + 1) = 2 tan A
Prove the following trigonometric identities.
`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Show that : tan 10° tan 15° tan 75° tan 80° = 1
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
`1+ (cot^2 theta)/((1+ cosec theta))= cosec theta`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identities:
`(tan"A"+tan"B")/(cot"A"+cot"B")=tan"A"tan"B"`
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
If tan θ × A = sin θ, then A = ?
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Show that: `tan "A"/(1 + tan^2 "A")^2 + cot "A"/(1 + cot^2 "A")^2 = sin"A" xx cos"A"`