Advertisements
Advertisements
प्रश्न
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
उत्तर
LHS = `(tan theta)/((sec theta -1)) + (tan theta)/((sec theta +1))`
=`tan theta {(sec^theta +1+ sec theta-1)/((sec theta -1)( sec theta +1))}`
=` tan theta {(2 sec theta)/(sec^2 theta-1)}`
=` tan theta xx(2 sec theta)/(tan^2 theta -1)`
=`2 (sec^theta)/(tan^theta)`
=`2 (1/cos theta)/(sin theta/cos theta)`
=`2 1/sin theta`
=`2 cosec theta`
= RHS
Hence, LHS = RHS
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined.
`(sintheta - 2sin^3theta)/(2costheta - costheta) =tan theta`
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`tan theta/(1 - cot theta) + cot theta/(1 - tan theta) = 1 + tan theta + cot theta`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If m = ` ( cos theta - sin theta ) and n = ( cos theta + sin theta ) "then show that" sqrt(m/n) + sqrt(n/m) = 2/sqrt(1-tan^2 theta)`.
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
If `sin theta = x , " write the value of cot "theta .`
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`(cotA + tanB)/(cotB + tanA) = cotAtanB`
Prove the following identity :
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`
Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.
Prove that `sqrt((1 + sin θ)/(1 - sin θ))` = sec θ + tan θ.
Prove that `tan A/(1 + tan^2 A)^2 + cot A/(1 + cot^2 A)^2 = sin A.cos A`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that: `1/(cosec"A" - cot"A") - 1/sin"A" = 1/sin"A" - 1/(cosec"A" + cot"A")`
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?