Advertisements
Advertisements
प्रश्न
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
उत्तर
LHS = `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A)`
= `((sin A + cos A)^2 + (sin A - cos A)^2)/((sin A - cos A)(sin A + cos A))`
= `(sin^2 A + cos^2 A + 2 sin A cos A + sin^2 A + cos^2 A - 2sin A. cos A)/(sin^2 A - cos^2 A)`
= `2(sin^2 A + cos^2 A)/(sin^A - cos^2 A)`
= `2/(sin^2 A - cos^2 A)`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
`(sin theta +cos theta )/(sin theta - cos theta)+(sin theta- cos theta)/(sin theta + cos theta) = 2/((sin^2 theta - cos ^2 theta)) = 2/((2 sin^2 theta -1))`
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
If x = a sin θ and y = b cos θ, what is the value of b2x2 + a2y2?
If cosec2 θ (1 + cos θ) (1 − cos θ) = λ, then find the value of λ.
Prove the following identity :
secA(1 + sinA)(secA - tanA) = 1
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
The value of tan A + sin A = M and tan A - sin A = N.
The value of `("M"^2 - "N"^2) /("MN")^0.5`