हिंदी

Prove the Following Trigonometric Identities. `(Cosec A)/(Cosec A - 1) + (Cosec A)/(Cosec a = 1) = 2 Sec^2 a - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following trigonometric identities.

`(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`

उत्तर

We need to prove  `(cosec A)/(cosec A  - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`

Using identity `a^2 - b^2 = (a + b)(a - b)` we get

`(cosec A)/(cosec A - 1) = (cosec A)/(cosec A + 1) = (cosec A(cosec A + 1)+cosec A(cosec A - 1))/(cosec^2 A - 1)`

`= (cosec A (cosec A +1 + cosec A - 1))/(cosec^2 A - 1)`

Further, using the property  `1 + cot62 theta = cosec^2 theta` we get

So

`(cosec A (cosec A + 1 + cosec A - 1))/(cosec^2 A- 1) =  (cosec A(2 cosec A))/cot^2 A`       

`= (2cosec^2 A)/cot^2 A`

`= (2)(1/sin^2 A)((cos^2 A)/(sin^2 A))`

`= 2(1/cos^2 A)`

`= 2 sec^2 A`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.1 [पृष्ठ ४५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.1 | Q 43 | पृष्ठ ४५

संबंधित प्रश्न

`"If "\frac{\cos \alpha }{\cos \beta }=m\text{ and }\frac{\cos \alpha }{\sin \beta }=n " show that " (m^2 + n^2 ) cos^2 β = n^2`

 


`(1+tan^2A)/(1+cot^2A)` = ______.


Prove the following trigonometric identities.

(1 + tan2θ) (1 − sinθ) (1 + sinθ) = 1


Prove the following trigonometric identities.

`1/(1 + sin A) + 1/(1 - sin A) =  2sec^2 A`


Prove the following trigonometric identities.

`(sec A - tan A)/(sec A + tan A) = (cos^2 A)/(1 + sin A)^2`


`(1 + cot^2 theta ) sin^2 theta =1`


`1/((1+ sintheta ))+1/((1- sin theta ))= 2 sec^2 theta`


Write the value of tan1° tan 2°   ........ tan 89° .


Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.


What is the value of \[\frac{\tan^2 \theta - \sec^2 \theta}{\cot^2 \theta - {cosec}^2 \theta}\]


2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to 


Prove the following identity :

cosecθ(1 + cosθ)(cosecθ - cotθ) = 1


Prove the following identity : 

`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that `sqrt((1 - sin θ)/(1 + sin θ)) = sec θ - tan θ`.


Prove that cos2θ . (1 + tan2θ) = 1. Complete the activity given below.

Activity:

L.H.S = `square`

= `cos^2theta xx square    .....[1 + tan^2theta = square]`

= `(cos theta xx square)^2`

= 12

= 1

= R.H.S


If cosA + cos2A = 1, then sin2A + sin4A = 1.


If 2sin2θ – cos2θ = 2, then find the value of θ.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×