Advertisements
Advertisements
Question
Prove the following trigonometric identities.
`(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Solution
We need to prove `(cosec A)/(cosec A - 1) + (cosec A)/(cosec A = 1) = 2 sec^2 A`
Using identity `a^2 - b^2 = (a + b)(a - b)` we get
`(cosec A)/(cosec A - 1) = (cosec A)/(cosec A + 1) = (cosec A(cosec A + 1)+cosec A(cosec A - 1))/(cosec^2 A - 1)`
`= (cosec A (cosec A +1 + cosec A - 1))/(cosec^2 A - 1)`
Further, using the property `1 + cot62 theta = cosec^2 theta` we get
So
`(cosec A (cosec A + 1 + cosec A - 1))/(cosec^2 A- 1) = (cosec A(2 cosec A))/cot^2 A`
`= (2cosec^2 A)/cot^2 A`
`= (2)(1/sin^2 A)((cos^2 A)/(sin^2 A))`
`= 2(1/cos^2 A)`
`= 2 sec^2 A`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Prove the following identities:
sec2 A + cosec2 A = sec2 A . cosec2 A
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
Prove that `( sintheta - 2 sin ^3 theta ) = ( 2 cos ^3 theta - cos theta) tan theta`
If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
What is the value of 9cot2 θ − 9cosec2 θ?
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that:
tan (55° + x) = cot (35° – x)
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If 3 sin A + 5 cos A = 5, then show that 5 sin A – 3 cos A = ± 3
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Eliminate θ if x = r cosθ and y = r sinθ.