English

Prove the following that: θθθθtan3θ1+tan2θ+cot3θ1+cot2θ = secθ cosecθ – 2 sinθ cosθ - Mathematics

Advertisements
Advertisements

Question

Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ

Sum

Solution

LHS: `((sin^3θ)/(cos^3θ))/((1  +  sin^2θ)/(cos^2θ)) + ((cos^3θ)/(sin^3θ))/((1  +  cos^2θ)/(sin^2θ))`

= `((sin^3θ)/(cos^3θ))/(((cos^2θ + sin^2θ))/cos^2θ) + ((cos^3θ)/(sin^3θ))/(((sin^2θ + cos^2θ))/sin^2θ)`

= `sin^3θ/cosθ + cos^3θ/sinθ`

= `(sin^4θ + cos^4θ)/(cosθsinθ)`

= `((sin^2θ + cos^2θ)^2 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`

= `(1 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`

= `1/(cos θ sinθ) - (2 sin^2θcos^2θ)/(cosθ sinθ)`

= secθ cosec θ – 2 sinθ cosθ

= RHS

shaalaa.com
  Is there an error in this question or solution?
2022-2023 (March) Standard Sample

RELATED QUESTIONS

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`

[Hint: Write the expression in terms of sinθ and cosθ]


Prove the following identities:

(cos A + sin A)2 + (cos A – sin A)2 = 2


Prove the following identities:

`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`


Prove the following identities:

`cosecA - cotA = sinA/(1 + cosA)`


If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A


`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`


If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 


If sec θ + tan θ = x, then sec θ =


Prove that: 
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1


Prove the following identity : 

`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`


Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Prove the following identities.

cot θ + tan θ = sec θ cosec θ


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×