Advertisements
Advertisements
Question
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Solution
LHS: `((sin^3θ)/(cos^3θ))/((1 + sin^2θ)/(cos^2θ)) + ((cos^3θ)/(sin^3θ))/((1 + cos^2θ)/(sin^2θ))`
= `((sin^3θ)/(cos^3θ))/(((cos^2θ + sin^2θ))/cos^2θ) + ((cos^3θ)/(sin^3θ))/(((sin^2θ + cos^2θ))/sin^2θ)`
= `sin^3θ/cosθ + cos^3θ/sinθ`
= `(sin^4θ + cos^4θ)/(cosθsinθ)`
= `((sin^2θ + cos^2θ)^2 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`
= `(1 - 2 sin^2θ cos^2θ)/(cosθ sinθ)`
= `1/(cos θ sinθ) - (2 sin^2θcos^2θ)/(cosθ sinθ)`
= secθ cosec θ – 2 sinθ cosθ
= RHS
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities:
(i) (1 – sin2θ) sec2θ = 1
(ii) cos2θ (1 + tan2θ) = 1
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
Prove the following identities:
`cosecA - cotA = sinA/(1 + cosA)`
If 2 sin A – 1 = 0, show that: sin 3A = 3 sin A – 4 sin3 A
`costheta/((1-tan theta))+sin^2theta/((cos theta-sintheta))=(cos theta+ sin theta)`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
If sec θ + tan θ = x, then sec θ =
Prove that:
(cosec θ - sinθ )(secθ - cosθ ) ( tanθ +cot θ) =1
Prove the following identity :
`(cotA - cosecA)^2 = (1 - cosA)/(1 + cosA)`
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If sinθ – cosθ = 0, then the value of (sin4θ + cos4θ) is ______.