English

P If Sin θ = 1 3 Then Find the Value of 9tan2 θ + 9. - Mathematics

Advertisements
Advertisements

Question

If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9. 

Sum

Solution

Given: 

`cos θ=3/4` 

⇒ `1/cosec θ=4/3` 

⇒` sec θ=4/3` 

We know that, 

`sec^2θ-tan ^2 θ=1` 

⇒` (4/3)^2-tan ^2 θ=1` 

⇒` tan^2 θ=16/9-1` 

⇒` tan^2 θ=7/9` 

Therefore, 

`9 tan ^2 θ+9=9xx7/9+9`

`= 7+9` 

`=16`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.3 [Page 55]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.3 | Q 18 | Page 55

RELATED QUESTIONS

If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove the following trigonometric identities.

`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`


Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`


Prove the following identities:

`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`


`sin^2 theta + 1/((1+tan^2 theta))=1`


`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


Find the value of sin ` 48° sec 42° + cos 48°  cosec 42°`

 


Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ


What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]


Prove the following identity :

`sec^2A.cosec^2A = tan^2A + cot^2A + 2`


Prove the following identity :

`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`


Without using trigonometric table , evaluate : 

`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.


Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`


Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.


If tan θ + cot θ = 2, then tan2θ + cot2θ = ?


If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×