Advertisements
Advertisements
Question
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Solution
Given:
`cos θ=3/4`
⇒ `1/cosec θ=4/3`
⇒` sec θ=4/3`
We know that,
`sec^2θ-tan ^2 θ=1`
⇒` (4/3)^2-tan ^2 θ=1`
⇒` tan^2 θ=16/9-1`
⇒` tan^2 θ=7/9`
Therefore,
`9 tan ^2 θ+9=9xx7/9+9`
`= 7+9`
`=16`
APPEARS IN
RELATED QUESTIONS
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`1/(sec A - 1) + 1/(sec A + 1) = 2 cosec A cot A`
Prove that: `sqrt((sec theta - 1)/(sec theta + 1)) + sqrt((sec theta + 1)/(sec theta - 1)) = 2 cosec theta`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
`sin^2 theta + 1/((1+tan^2 theta))=1`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Prove the following identity :
`sec^2A.cosec^2A = tan^2A + cot^2A + 2`
Prove the following identity :
`tan^2θ/(tan^2θ - 1) + (cosec^2θ)/(sec^2θ - cosec^2θ) = 1/(sin^2θ - cos^2θ)`
Without using trigonometric table , evaluate :
`cos90^circ + sin30^circ tan45^circ cos^2 45^circ`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that : `(sin(90° - θ) tan(90° - θ) sec (90° - θ))/(cosec θ. cos θ. cot θ) = 1`
Prove that `sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A - 1) = 1`.
If tan θ + cot θ = 2, then tan2θ + cot2θ = ?
If sin θ + cos θ = p and sec θ + cosec θ = q, then prove that q(p2 – 1) = 2p.
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?