Advertisements
Advertisements
Question
What is the value of \[\sin^2 \theta + \frac{1}{1 + \tan^2 \theta}\]
Solution
We have,
`sin^2 θ+1/(1+tan^2θ)= sin^2θ+1/(sqc^2θ)`
=` sin^2θ+(1/secθ)^2`
=` sin^2 θ+cos^2θ`
=` 1`
APPEARS IN
RELATED QUESTIONS
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(sin theta-2sin^3theta)/(2cos^3theta -costheta) = tan theta`
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
(cos A + sin A)2 + (cos A – sin A)2 = 2
Prove the following identities:
`1/(1 + cosA) + 1/(1 - cosA) = 2cosec^2A`
If sec A + tan A = p, show that:
`sin A = (p^2 - 1)/(p^2 + 1)`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
(i)` (1-cos^2 theta )cosec^2theta = 1`
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Eliminate θ, if
x = 3 cosec θ + 4 cot θ
y = 4 cosec θ – 3 cot θ
If x = asecθ + btanθ and y = atanθ + bsecθ , prove that `x^2 - y^2 = a^2 - b^2`
Find the value of sin 30° + cos 60°.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
If tan θ = `13/12`, then cot θ = ?
Prove the following:
`1 + (cot^2 alpha)/(1 + "cosec" alpha)` = cosec α
Let x1, x2, x3 be the solutions of `tan^-1((2x + 1)/(x + 1)) + tan^-1((2x - 1)/(x - 1))` = 2tan–1(x + 1) where x1 < x2 < x3 then 2x1 + x2 + x32 is equal to ______.