English

Prove the Following Trigonometric Identities. `Tan Theta - Cot Theta = (2 Sin^2 Theta - 1)/(Sin Theta Cos Theta)` - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`

Solution

 We have to prove  `tan theta - cot theta = (2 sin^2 theta - `1)/(sin theta cos theta)`

We know that. `sin^2 theta + cos^2 theta - 1`

So,

`tan theta - cot theta = sin theta/cos theta -  cos theta/sin theta`

`= (sin^2 theta - cos^2 theta)/(sin theta cos theta)`

`= (sin^2 theta -  (1 - sin^2 theta))/(sin theta cos theta)`

`= (sin^2 theta - (1 - sin^2 theta))/(sin theta cos theta)`

`= (2 sin^2 theta - 1)/(sin theta cos theta)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 44]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 23.2 | Page 44

RELATED QUESTIONS

Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities

If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z c tan θ, show that `x^2/a^2 + y^2/b^2 - x^2/c^2 = 1`


Prove the following identities:

(cosec A + sin A) (cosec A – sin A) = cot2 A + cos2 A


Prove the following identities:

(cosec A – sin A) (sec A – cos A) (tan A + cot A) = 1


Show that : `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec A cosec A`


(cosec θ − sin θ) (sec θ − cos θ) (tan θ + cot θ) is equal to


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


Prove the following identity : 

`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2Acos^2B)`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove that:

`sqrt((sectheta - 1)/(sec theta + 1)) + sqrt((sectheta + 1)/(sectheta - 1)) = 2cosectheta`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ


Prove that `(1 + sec "A")/"sec A" = (sin^2"A")/(1 - cos"A")`


Prove that

`(cot "A" + "cosec  A" - 1)/(cot"A" - "cosec  A" + 1) = (1 + cos "A")/"sin A"`


If cosec A – sin A = p and sec A – cos A = q, then prove that `("p"^2"q")^(2/3) + ("pq"^2)^(2/3)` = 1


Prove the following:

`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×