Advertisements
Advertisements
Question
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Solution
LHS = `sqrt(((1 + cos A)(1 + cos A))/((1 - cos A)(1 + cos A)))`
= `sqrt((1 + cos A)^2/(1 - cos^2 A))`
= `sqrt((1 + cos^2 A + 2cos A)/sin^2 A`
= `(1 + cos A)/sin A`
RHS = `(tan A + sin A)/(tan A sin A)`
= `(sin A(1/cos A + 1))/((sin A/cos A xx sin A)`
= `(sin A( 1 + cos A))/cos A xx cos A/(sin A sin A)`
= `(1 + cos A)/sin A`
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`(cot A - cos A)/(cot A + cos A) = (cosec A - 1)/(cosec A + 1)`
`sin^2 theta + cos^4 theta = cos^2 theta + sin^4 theta`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If `(x/a sin a - y/b cos theta) = 1 and (x/a cos theta + y/b sin theta ) =1, " prove that "(x^2/a^2 + y^2/b^2 ) =2`
If `cos theta = 7/25 , "write the value of" ( tan theta + cot theta).`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`sin^4A + cos^4A = 1 - 2sin^2Acos^2A`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that `(cos^2theta)/(sintheta) + sintheta` = cosec θ
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`