Advertisements
Advertisements
Question
Prove that `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ)) = 1/(tan θ + cot θ)`
Solution
LHS = `((1 - cos^2 θ)/cos θ)((1 - sin^2θ)/(sin θ))`
LHS = `(sin^2 θ/cos θ). (cos^2 θ/sin θ)`
LHS = sin θ. cos θ
RHS = `1/(tan θ + cot θ)`
RHS = `1/((sin^2 θ + cos^2 θ)/(sin θ. cos θ))`
RHS = `(sin θ. cos θ)/(sin^2 θ + cos^2 θ)`
RHS = sin θ. cos θ
LHS = RHS
Hence proved.
APPEARS IN
RELATED QUESTIONS
If m=(acosθ + bsinθ) and n=(asinθ – bcosθ) prove that m2+n2=a2+b2
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
Prove the following identity :
`sin^2Acos^2B - cos^2Asin^2B = sin^2A - sin^2B`
Prove the following identity :
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Without using trigonometric table , evaluate :
`cosec49°cos41° + (tan31°)/(cot59°)`
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that
sin2A . tan A + cos2A . cot A + 2 sin A . cos A = tan A + cot A