English

`1+((Tan^2 Theta) Cot Theta)/(Cosec^2 Theta) = Tan Theta` - Mathematics

Advertisements
Advertisements

Question

`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`

Solution

LHS = `((1+ tan^2 theta) cot theta)/ (cosec^2 theta) `

       =` (sec^2 theta cot theta)/(cosec^2 theta )`

       =`(1/cos^2thetaxxcos theta/sin theta)/(1/sin^2 theta)`

       =`1/(cos theta sin theta) xx sin^2 theta`

        =`sintheta/costheta`

         =` tan theta`

          =RHS 

         Hence, LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 9

RELATED QUESTIONS

Prove the following trigonometric identities.

`(cos A cosec A - sin A sec A)/(cos A + sin A) = cosec A - sec A`


Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

cosec4 A (1 – cos4 A) – 2 cot2 A = 1


(i)` (1-cos^2 theta )cosec^2theta = 1`


`cosec theta (1+costheta)(cosectheta - cot theta )=1`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


If `(cosec theta - sin theta )= a^3 and (sec theta - cos theta ) = b^3 , " prove that " a^2 b^2 ( a^2+ b^2 ) =1`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that :(sinθ+cosecθ)2+(cosθ+ secθ)2 = 7 + tan2 θ+cotθ.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


Prove that `sintheta/(sectheta+ 1) +sintheta/(sectheta - 1)` = 2 cot θ


Prove that `sqrt(sec^2 theta + "cosec"^2 theta) = tan theta + cot theta`


Show that tan4θ + tan2θ = sec4θ – sec2θ.


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×