English

Prove the Following Trigonometric Identities Sec4 A(1 − Sin4 A) − 2 Tan2 A = 1 - Mathematics

Advertisements
Advertisements

Question

Prove the following trigonometric identities

sec4 A(1 − sin4 A) − 2 tan2 A = 1

Solution

We have to prove sec4 A(1 − sin4 A) − 2 tan2 A = 1

We know that `sin^2 A + cos^2 A = 1`

So,

`sec^4 A (1 - sin^4 A) - 2tan^2 A = 1/cos^4 A (1 - sin^4 A) - 2 sin^2 A/cos^2 A`

`= (1/cos^4 A - sin^4 A/cos^4 A) - 2 (sin^2 A)/(cos^2 A)`

`= ((1 - sin^4 A)/cos^4 A) - 2 (sin^2 A)/cos^2 A`

`= ((1 - sin^2 A)(1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`

`= (cos^2 A (1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`

`= (1 + sin^2 A - 2 sin^2 A)/cos^2 A`

`= (1 - sin^2 A)/cos^2 A`

`= cos^2 A/cos^2 A`

= 1

Hence proved.

shaalaa.com
  Is there an error in this question or solution?
Chapter 11: Trigonometric Identities - Exercise 11.1 [Page 46]

APPEARS IN

RD Sharma Mathematics [English] Class 10
Chapter 11 Trigonometric Identities
Exercise 11.1 | Q 66 | Page 46

RELATED QUESTIONS

Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following trigonometric identities.

(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A


Prove the following trigonometric identities.

`(tan A + tan B)/(cot A + cot B) = tan A tan B`


Prove the following identities:

`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`


Prove that:

(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B


If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2


If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.


`(1+ cos  theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`


`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`


If `sec theta + tan theta = x,"  find the value of " sec theta`


Prove the following identity : 

`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`


Without using trigonometric table , evaluate : 

`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`


Prove that  `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`


Evaluate:
`(tan 65°)/(cot 25°)`


Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.


Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ)  +  cos2 θ.


Prove the following identities.

`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2


Choose the correct alternative:

sec2θ – tan2θ =?


Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×