Advertisements
Advertisements
Question
Prove the following trigonometric identities
sec4 A(1 − sin4 A) − 2 tan2 A = 1
Solution
We have to prove sec4 A(1 − sin4 A) − 2 tan2 A = 1
We know that `sin^2 A + cos^2 A = 1`
So,
`sec^4 A (1 - sin^4 A) - 2tan^2 A = 1/cos^4 A (1 - sin^4 A) - 2 sin^2 A/cos^2 A`
`= (1/cos^4 A - sin^4 A/cos^4 A) - 2 (sin^2 A)/(cos^2 A)`
`= ((1 - sin^4 A)/cos^4 A) - 2 (sin^2 A)/cos^2 A`
`= ((1 - sin^2 A)(1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`
`= (cos^2 A (1 + sin^2 A))/cos^4 A - 2 sin^2 A/cos^2 A`
`= (1 + sin^2 A - 2 sin^2 A)/cos^2 A`
`= (1 - sin^2 A)/cos^2 A`
`= cos^2 A/cos^2 A`
= 1
Hence proved.
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`tan theta + 1/tan theta = sec theta cosec theta`
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities.
(sec A − cosec A) (1 + tan A + cot A) = tan A sec A − cot A cosec A
Prove the following trigonometric identities.
`(tan A + tan B)/(cot A + cot B) = tan A tan B`
Prove the following identities:
`(1 + cosA)/(1 - cosA) = tan^2A/(secA - 1)^2`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
If x = r cos A cos B, y = r cos A sin B and z = r sin A, show that : x2 + y2 + z2 = r2
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
`(1+ cos theta - sin^2 theta )/(sin theta (1+ cos theta))= cot theta`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
If `sec theta + tan theta = x," find the value of " sec theta`
Prove the following identity :
`2(sin^6θ + cos^6θ) - 3(sin^4θ + cos^4θ) + 1 = 0`
Without using trigonometric table , evaluate :
`(sin47^circ/cos43^circ)^2 - 4cos^2 45^circ + (cos43^circ/sin47^circ)^2`
Prove that `sin(90^circ - A).cos(90^circ - A) = tanA/(1 + tan^2A)`
Evaluate:
`(tan 65°)/(cot 25°)`
Prove that cos θ sin (90° - θ) + sin θ cos (90° - θ) = 1.
Proved that cosec2(90° - θ) - tan2 θ = cos2(90° - θ) + cos2 θ.
Prove the following identities.
`(sin^3"A" + cos^3"A")/(sin"A" + cos"A") + (sin^3"A" - cos^3"A")/(sin"A" - cos"A")` = 2
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that `(1 + sintheta)/(1 - sin theta)` = (sec θ + tan θ)2