English

If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p. - Mathematics

Advertisements
Advertisements

Question

If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.

Sum

Solution

q(p2 – 1) = (sec A + cosec A) [(sin A + cos A)2 – 1]

= (sec A + cosec A) [(sin2 A + cos2 A + 2 sin A cos A) – 1]

= (sec A + cosec A) [(1 + 2 sin A cos A) – 1]

= (sec A + cosec A) (2 sin A cos A)

= 2 sin A + 2 cos A

= 2p

shaalaa.com
  Is there an error in this question or solution?
Chapter 21: Trigonometrical Identities - Exercise 21 (E) [Page 332]

APPEARS IN

Selina Mathematics [English] Class 10 ICSE
Chapter 21 Trigonometrical Identities
Exercise 21 (E) | Q 2 | Page 332
Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×