Advertisements
Advertisements
Question
If sin A + cos A = p and sec A + cosec A = q, then prove that : q(p2 – 1) = 2p.
Solution
q(p2 – 1) = (sec A + cosec A) [(sin A + cos A)2 – 1]
= (sec A + cosec A) [(sin2 A + cos2 A + 2 sin A cos A) – 1]
= (sec A + cosec A) [(1 + 2 sin A cos A) – 1]
= (sec A + cosec A) (2 sin A cos A)
= 2 sin A + 2 cos A
= 2p
APPEARS IN
RELATED QUESTIONS
`(sin theta+1-cos theta)/(cos theta-1+sin theta) = (1+ sin theta)/(cos theta)`
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If 5x = sec θ and \[\frac{5}{x} = \tan \theta\]find the value of \[5\left( x^2 - \frac{1}{x^2} \right)\]
Prove that:
`sqrt(( secθ - 1)/(secθ + 1)) + sqrt((secθ + 1)/(secθ - 1)) = 2cosecθ`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`