English

If `( Sin Theta + Cos Theta ) = Sqrt(2) , " Prove that " Cot Theta = ( Sqrt(2)+1)`. - Mathematics

Advertisements
Advertisements

Question

If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.

Solution

We have , `(sin theta + cos theta ) = sqrt(2) cos theta`

Dividing both sides by sin θ , We get 

 `(sin theta)/ (sin theta )+ (cos theta)/ (sin theta)= (sqrt(2) cos theta)/ (sin theta)`

⇒ `1+ cot theta = sqrt(2) cot theta`

       ⇒ `sqrt(2) cot theta - cot theta =1` 

⇒ `( sqrt(2) - 1 ) cot theta =1`

`⇒ cot theta = 1/ (( sqrt(2)-1))`

`⇒ cot theta = 1/((sqrt(2)-1))xx ((sqrt(2)+1))/((sqrt(2)+1))`

`⇒ cot theta = ((sqrt(2)+1))/(2-1)`

`⇒ cot theta = ((sqrt(2)+1))/1`

∴`cot theta = (sqrt (2) +1)`

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 11

RELATED QUESTIONS

If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`


If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`


Prove the following trigonometric identities.

`(cos^2 theta)/sin theta - cosec theta +  sin theta  = 0`


if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`


Prove the following identities:

`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`


Prove that:

`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`


Prove the following identities:

sec4 A (1 – sin4 A) – 2 tan2 A = 1


`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`


`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


Write True' or False' and justify your answer the following: 

\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.


If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ = 


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity :

secA(1 - sinA)(secA + tanA) = 1


Prove the following identity : 

`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`


If sec θ = `25/7`, then find the value of tan θ.


If 3 sin θ = 4 cos θ, then sec θ = ?


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×