Advertisements
Advertisements
Question
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
Solution
We have , `(sin theta + cos theta ) = sqrt(2) cos theta`
Dividing both sides by sin θ , We get
`(sin theta)/ (sin theta )+ (cos theta)/ (sin theta)= (sqrt(2) cos theta)/ (sin theta)`
⇒ `1+ cot theta = sqrt(2) cot theta`
⇒ `sqrt(2) cot theta - cot theta =1`
⇒ `( sqrt(2) - 1 ) cot theta =1`
`⇒ cot theta = 1/ (( sqrt(2)-1))`
`⇒ cot theta = 1/((sqrt(2)-1))xx ((sqrt(2)+1))/((sqrt(2)+1))`
`⇒ cot theta = ((sqrt(2)+1))/(2-1)`
`⇒ cot theta = ((sqrt(2)+1))/1`
∴`cot theta = (sqrt (2) +1)`
APPEARS IN
RELATED QUESTIONS
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`(cos^2 theta)/sin theta - cosec theta + sin theta = 0`
if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2 = 2`
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
Prove that:
`1/(cosA + sinA - 1) + 1/(cosA + sinA + 1) = cosecA + secA`
Prove the following identities:
sec4 A (1 – sin4 A) – 2 tan2 A = 1
`(sectheta- tan theta)/(sec theta + tan theta) = ( cos ^2 theta)/( (1+ sin theta)^2)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
If sin θ + sin2 θ = 1, then cos2 θ + cos4 θ =
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
secA(1 - sinA)(secA + tanA) = 1
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
If sec θ = `25/7`, then find the value of tan θ.
If 3 sin θ = 4 cos θ, then sec θ = ?
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?