English

`(Tan a + Tanb )/(Cot a + Cot B) = Tan a Tan B` - Mathematics

Advertisements
Advertisements

Question

`(tan A + tanB )/(cot A + cot B) = tan A tan B`

Solution

LHS = `(tan A + tanB )/(cot A + cot B) `

       =`(tan A + tan B)/(1/ tan A + 1/ tanB)`

       =` (tan A + tan B)/( (tan A+tan B)/ (tan A tan B)`

        =`(tan A tan B ( tan A + tan B))/((tan A + tan B ))`

        = ๐‘ก๐‘Ž๐‘›๐ด ๐‘ก๐‘Ž๐‘›๐ต
        = RHS
Hence, LHS = RHS

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 1

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 1 | Q 35

RELATED QUESTIONS

(secA + tanA) (1 − sinA) = ______.


Prove the following trigonometric identities.

`cot theta - tan theta = (2 cos^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(1 + cos A)/sin A = sin A/(1 - cos A)`


`Prove the following trigonometric identities.

`(sec A - tan A)^2 = (1 - sin A)/(1 +  sin A)`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following trigonometric identities.

tan2 A sec2 B − sec2 A tan2 B = tan2 A − tan2 B


Prove the following identities:

`1/(cosA + sinA) + 1/(cosA - sinA) = (2cosA)/(2cos^2A - 1)`


`(1+tan^2theta)(1+cot^2 theta)=1/((sin^2 theta- sin^4theta))`


If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`


What is the value of 9cot2 θ − 9cosec2 θ? 


Prove the following identity : 

`cosA/(1 - tanA) + sinA/(1 - cotA) = sinA + cosA`


Prove the following identity : 

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


Prove the following identity :

`(secA - 1)/(secA + 1) = sin^2A/(1 + cosA)^2`


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


If sin θ = `1/2`, then find the value of θ. 


If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.


Without using a trigonometric table, prove that
`(cos 70°)/(sin 20°) + (cos 59°)/(sin 31°) - 8sin^2 30° = 0`.


Prove the following identities: cot θ - tan θ = `(2 cos^2 θ - 1)/(sin θ cos θ)`.


Prove that: `(sin θ - 2sin^3 θ)/(2 cos^3 θ - cos θ) = tan θ`.


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishเคนเคฟเค‚เคฆเฅ€เคฎเคฐเคพเค เฅ€


      Forgot password?
Use app×