Advertisements
Advertisements
Question
If tan A = n tan B and sin A = m sin B , prove that `cos^2 A = ((m^2-1))/((n^2 - 1))`
Solution
We have tanA = n tan B
⇒ `cot B = n/tanA ........(i)`
Again , sin A = m sin B
` ⇒ cosec B = m/ sin A ........(ii) `
Squaring (i) and ( ii) and subtracting (ii) from (i) , We get
`⇒ (m^2)/(sin^2 A) - (n^2 )/(tan^2 A) = cosec ^2 B - cot^2 B`
`⇒ (m^2 )/(sin^2 A )-(n^2 cos )/(sin^2 A)m=1`
`⇒m^2 - n^2 cos^2 A = sin^2 A`
`⇒ m^2 - n^2 cos^2 A =1- cos^2 A`
`⇒ n^2 cos^2 A- cos^2 A = m^2 -1`
`⇒cos^2 A (n^2 -1) = (m^2 -1)`
`⇒ cos^2 A = ((m^2 -1))/((n^2 -1))`
∴` cos^2 A = ((m^2 -1))/((n^2 -1))`
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If `x/(a cosθ) = y/(b sinθ) "and" (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that" x^2/a^2 + y^2/b^2 = 1`
Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.
Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`
Choose the correct alternative:
sec2θ – tan2θ =?
Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ
If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ
Prove that `sec"A"/(tan "A" + cot "A")` = sin A
Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
Prove the following that:
`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ
Show that, cotθ + tanθ = cosecθ × secθ
Solution :
L.H.S. = cotθ + tanθ
= `cosθ/sinθ + sinθ/cosθ`
= `(square + square)/(sinθ xx cosθ)`
= `1/(sinθ xx cosθ)` ............... `square`
= `1/sinθ xx 1/square`
= cosecθ × secθ
L.H.S. = R.H.S
∴ cotθ + tanθ = cosecθ × secθ
Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1