English

If Tan a = N Tan B and Sin a = M Sin B , Prove That `Cos^2 a = ((M^2-1))/((N^2 - 1))` - Mathematics

Advertisements
Advertisements

Question

If tan A = n tan B and sin A = m sin B , prove that  `cos^2 A = ((m^2-1))/((n^2 - 1))`

Solution

We have tanA = n tan B     

⇒ `cot B = n/tanA   ........(i)`

Again , sin A = m sin B 

` ⇒ cosec B = m/ sin A  ........(ii) `

Squaring (i) and ( ii) and subtracting (ii) from (i) , We get 

`⇒ (m^2)/(sin^2 A) - (n^2 )/(tan^2 A) = cosec ^2 B - cot^2 B`

`⇒ (m^2 )/(sin^2 A )-(n^2 cos )/(sin^2 A)m=1`

`⇒m^2 - n^2 cos^2 A = sin^2 A`
`⇒ m^2 - n^2 cos^2  A =1- cos^2 A`

`⇒ n^2 cos^2 A- cos^2 A = m^2 -1`

`⇒cos^2 A (n^2 -1) = (m^2 -1)`

`⇒ cos^2 A = ((m^2 -1))/((n^2 -1))`

∴` cos^2 A = ((m^2 -1))/((n^2 -1))`

                                                                                                                                     

shaalaa.com
  Is there an error in this question or solution?
Chapter 8: Trigonometric Identities - Exercises 2

APPEARS IN

RS Aggarwal Mathematics [English] Class 10
Chapter 8 Trigonometric Identities
Exercises 2 | Q 14

RELATED QUESTIONS

Prove the following trigonometric identities.

`((1 + sin theta - cos theta)/(1 + sin theta + cos theta))^2 = (1 - cos theta)/(1 + cos theta)`


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


`(tan theta)/((sec theta -1))+(tan theta)/((sec theta +1)) = 2 sec theta`


Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\] 


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 

 

 


If `x/(a cosθ) = y/(b sinθ)   "and"  (ax)/cosθ - (by)/sinθ = a^2 - b^2 , "prove that"  x^2/a^2 + y^2/b^2 = 1`


Prove that sin2 θ + cos4 θ = cos2 θ + sin4 θ.


Prove that `(cot "A" + "cosec A" - 1)/(cot "A" - "cosec A" + 1) = (1 + cos "A")/sin "A"`


Choose the correct alternative:

sec2θ – tan2θ =?


Prove that `(sin^2theta)/(cos theta) + cos theta` = sec θ


If 5 sec θ – 12 cosec θ = 0, then find values of sin θ, sec θ


Prove that `sec"A"/(tan "A" + cot "A")` = sin A


Show that tan 7° × tan 23° × tan 60° × tan 67° × tan 83° = `sqrt(3)`


If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.


Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Prove the following that:

`tan^3θ/(1 + tan^2θ) + cot^3θ/(1 + cot^2θ)` = secθ cosecθ – 2 sinθ cosθ


Show that, cotθ + tanθ = cosecθ × secθ

Solution :

L.H.S. = cotθ + tanθ

= `cosθ/sinθ + sinθ/cosθ`

= `(square + square)/(sinθ xx cosθ)`

= `1/(sinθ xx cosθ)` ............... `square`

= `1/sinθ xx 1/square`

= cosecθ × secθ

L.H.S. = R.H.S

∴ cotθ + tanθ = cosecθ × secθ


Prove that `(1 + tan^2 A)/(1 + cot^2 A)` = sec2 A – 1


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×