Advertisements
Advertisements
Question
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
Solution
(1 + tan2θ)(1 – sinθ)(1 + sinθ)
= (1 + tan2θ)(1 – sin2θ) ...[∵ (a – b)(a + b) = a2 – b2]
= sec2θ . cos2θ ...[∵ 1 + tan2θ = sec2θ and cos2θ + sin2θ = 1]
= `1/(cos^2 theta) * cos^2 theta` ...`[∵ sec theta = 1/costheta]`
= 1
APPEARS IN
RELATED QUESTIONS
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities
`(1 + tan^2 theta)/(1 + cot^2 theta) = ((1 - tan theta)/(1 - cot theta))^2 = tan^2 theta`
Prove the following trigonometric identities.
`(1 + cot A + tan A)(sin A - cos A) = sec A/(cosec^2 A) - (cosec A)/sec^2 A = sin A tan A - cos A cot A`
Prove the following trigonometric identities.
sin2 A cos2 B − cos2 A sin2 B = sin2 A − sin2 B
Prove that `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(1-cos^2theta) sec^2 theta = tan^2 theta`
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
If sec θ + tan θ = x, then sec θ =
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove that: `cos^2 A + 1/(1 + cot^2 A) = 1`.
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
`1/sin^2θ - 1/cos^2θ - 1/tan^2θ - 1/cot^2θ - 1/sec^2θ - 1/("cosec"^2θ) = -3`, then find the value of θ.