Advertisements
Advertisements
प्रश्न
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
उत्तर
(1 + tan2θ)(1 – sinθ)(1 + sinθ)
= (1 + tan2θ)(1 – sin2θ) ...[∵ (a – b)(a + b) = a2 – b2]
= sec2θ . cos2θ ...[∵ 1 + tan2θ = sec2θ and cos2θ + sin2θ = 1]
= `1/(cos^2 theta) * cos^2 theta` ...`[∵ sec theta = 1/costheta]`
= 1
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(i) cos4^4 A – cos^2 A = sin^4 A – sin^2 A`
`(ii) cot^4 A – 1 = cosec^4 A – 2cosec^2 A`
`(iii) sin^6 A + cos^6 A = 1 – 3sin^2 A cos^2 A.`
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
If sinθ + sin2 θ = 1, prove that cos2 θ + cos4 θ = 1
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
Prove the following identities:
(1 + tan A + sec A) (1 + cot A – cosec A) = 2
If x = a cos θ and y = b cot θ, show that:
`a^2/x^2 - b^2/y^2 = 1`
(i)` (1-cos^2 theta )cosec^2theta = 1`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Write the value of sin A cos (90° − A) + cos A sin (90° − A).
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
The value of \[\sqrt{\frac{1 + \cos \theta}{1 - \cos \theta}}\]
If x = a cos θ and y = b sin θ, then b2x2 + a2y2 =
Prove the following identity :
`(1 + tan^2A) + (1 + 1/tan^2A) = 1/(sin^2A - sin^4A)`
Prove the following identity :
`sin^8θ - cos^8θ = (sin^2θ - cos^2θ)(1 - 2sin^2θcos^2θ)`
Prove that `[(1 + sin theta - cos theta)/(1 + sin theta + cos theta)]^2 = (1 - cos theta)/(1 + cos theta)`
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
Prove that sin θ (1 – tan θ) – cos θ (1 – cot θ) = cosec θ – sec θ
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
sec θ when expressed in term of cot θ, is equal to ______.