Advertisements
Advertisements
प्रश्न
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
उत्तर
L.H.S = `1/("cosec" theta - cot theta)`
= `1/("cosec" theta - cot theta) xx ("cosec"theta + cottheta)/("cosec"theta + cottheta)` ......[On rationalising the denominator]
= `("cosec"theta + cottheta)/("cosec"^2theta - cot^2theta)` ......[∵ (a – b)(a + b) = a2 – b2]
= `("cosec"theta cottheta)/1` ......`[(∵ 1 + cot^2θ = "cosec"^2θ),(∴ "cosec"^2θ - cot^2θ = 1)]`
= cosecθ + cotθ
= R.H.S
∴ `1/("cosec" theta - cot theta)` = cosec θ + cot θ
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
if cos A + cos2 A = 1, prove that sin2 A + sin4 A = 1
`sin^2 theta + 1/((1+tan^2 theta))=1`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(1 + tan^2 theta ) cos^2 theta`.
If `tan theta = 1/sqrt(5), "write the value of" (( cosec^2 theta - sec^2 theta))/(( cosec^2 theta - sec^2 theta))`
If sec θ + tan θ = x, write the value of sec θ − tan θ in terms of x.
\[\frac{1 - \sin \theta}{\cos \theta}\] is equal to
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
If sinA + cosA = m and secA + cosecA = n , prove that n(m2 - 1) = 2m
Prove that `(cos θ)/(1 - sin θ) = (1 + sin θ)/(cos θ)`.
Prove that `(sin (90° - θ))/cos θ + (tan (90° - θ))/cot θ + (cosec (90° - θ))/sec θ = 3`.
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ