Advertisements
Advertisements
प्रश्न
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
उत्तर
LHS = `sec^2A + cosec^2A`
= `1/cos^2A + 1/sin^2A = (sin^2A + cos^2A)/(cos^2A.sin^2A)`
= `1/(cos^2A.sin^2A) = sec^2Acosec^2A` = RHS
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`cos A/(1 + sin A) + (1 + sin A)/cos A = 2 sec A`
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
Prove the following identities:
`1 - cos^2A/(1 + sinA) = sinA`
Prove the following identity :
`tanA - cotA = (1 - 2cos^2A)/(sinAcosA)`
Prove that : `1 - (cos^2 θ)/(1 + sin θ) = sin θ`.
Prove that identity:
`(sec A - 1)/(sec A + 1) = (1 - cos A)/(1 + cos A)`
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos (α - β)/2` is ______.