Advertisements
Advertisements
प्रश्न
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
उत्तर
LHS = `cos^4A - sin^4A`
= `(cos^2A - sin^2A)(cos^2A + sin^2A)`
= `{cos^2A - (1 - cos^2A)} = 2cos^2A - 1` = RHS
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`(1 - sinA)/(1 + sinA) = (secA - tanA)^2`
Prove the following identities:
`(1 + (secA - tanA)^2)/(cosecA(secA - tanA)) = 2tanA`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
cos4 A − sin4 A is equal to ______.
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove that `sinA/sin(90^circ - A) + cosA/cos(90^circ - A) = sec(90^circ - A) cosec(90^circ - A)`
Prove that: 2(sin6θ + cos6θ) - 3 ( sin4θ + cos4θ) + 1 = 0.
`(1 - tan^2 45^circ)/(1 + tan^2 45^circ)` = ?
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?