Advertisements
Advertisements
प्रश्न
Prove the following identity :
`cos^4A - sin^4A = 2cos^2A - 1`
उत्तर
LHS = `cos^4A - sin^4A`
= `(cos^2A - sin^2A)(cos^2A + sin^2A)`
= `{cos^2A - (1 - cos^2A)} = 2cos^2A - 1` = RHS
APPEARS IN
संबंधित प्रश्न
(secA + tanA) (1 − sinA) = ______.
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(tan theta)/(1-cot theta) + (cot theta)/(1-tan theta) = 1+secthetacosectheta`
[Hint: Write the expression in terms of sinθ and cosθ]
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
If `( sin theta + cos theta ) = sqrt(2) , " prove that " cot theta = ( sqrt(2)+1)`.
If `secθ = 25/7 ` then find tanθ.
Simplify : 2 sin30 + 3 tan45.
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
2 (sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) is equal to
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`(1 + cosA)/(1 - cosA) = (cosecA + cotA)^2`