Advertisements
Advertisements
प्रश्न
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
उत्तर
LHS = (secA - cosA)(secA + cosA)
= `(sec^2A - cos^2A) = 1 + tan^2A - (1 - sin^2A)`
= `tan^2A + sin^2A` = RHS
APPEARS IN
संबंधित प्रश्न
Evaluate sin25° cos65° + cos25° sin65°
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove the following identities:
`((1 + tan^2A)cotA)/(cosec^2A) = tan A`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
cosec4 A (1 – cos4 A) – 2 cot2 A = 1
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
` (sin theta - cos theta) / ( sin theta + cos theta ) + ( sin theta + cos theta ) / ( sin theta - cos theta ) = 2/ ((2 sin^2 theta -1))`
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
If 3 sin θ = 4 cos θ, then sec θ = ?