Advertisements
Advertisements
प्रश्न
Prove the following identity :
`(cosecA - sinA)(secA - cosA)(tanA + cotA) = 1`
उत्तर
LHS = `(cosecA - sinA)(secA - cosA)(tanA + cotA)`
= `(1/sinA -sinA)(1/cosA - cosA)(tanA + 1/tanA)`
= `((1-sin^2A)/sinA)((1 - cos^2A)/cosA)(sinA/cosA + cosA/sinA)`
= `(cos^2A/sinA)(sin^2A/cosA)((sin^2A + cos^2A)/(sinA.cosA))`
= 1
APPEARS IN
संबंधित प्रश्न
If cosθ + sinθ = √2 cosθ, show that cosθ – sinθ = √2 sinθ.
If `(cot theta ) = m and ( sec theta - cos theta) = n " prove that " (m^2 n)(2/3) - (mn^2)(2/3)=1`
Write the value of `(cot^2 theta - 1/(sin^2 theta))`.
Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`
Prove the following identity :
cosecθ(1 + cosθ)(cosecθ - cotθ) = 1
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Prove that: sin4 θ + cos4θ = 1 - 2sin2θ cos2 θ.
If cos θ = `24/25`, then sin θ = ?
Prove that sec2θ − cos2θ = tan2θ + sin2θ