Advertisements
Advertisements
प्रश्न
If cos θ = `24/25`, then sin θ = ?
उत्तर
cos θ = `24/25` ......[Given]
We know that,
sin2θ + cos2θ = 1
∴ `sin^2theta + (24/25)^2` = 1
∴ `sin^2theta + 576/625` = 1
∴ sin2θ = `1 - 576/625`
∴ sin2θ = `(625 - 576)/625`
∴ sin2θ = `49/625`
∴ sin θ = `7/25` ......[Taking square root of both sides]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities:
`(\text{i})\text{ }\frac{\sin \theta }{1-\cos \theta }=\text{cosec}\theta+\cot \theta `
Express the ratios cos A, tan A and sec A in terms of sin A.
Prove the identity (sin θ + cos θ)(tan θ + cot θ) = sec θ + cosec θ.
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following identities:
`(cosecA - 1)/(cosecA + 1) = (cosA/(1 + sinA))^2`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
`sin^6 theta + cos^6 theta =1 -3 sin^2 theta cos^2 theta`
cosec4θ − cosec2θ = cot4θ + cot2θ
`(cos^3 theta +sin^3 theta)/(cos theta + sin theta) + (cos ^3 theta - sin^3 theta)/(cos theta - sin theta) = 2`
If x= a sec `theta + b tan theta and y = a tan theta + b sec theta ,"prove that" (x^2 - y^2 )=(a^2 -b^2)`
Write the value of `(1 - cos^2 theta ) cosec^2 theta`.
Write the value of `4 tan^2 theta - 4/ cos^2 theta`
Write True' or False' and justify your answer the following:
\[ \cos \theta = \frac{a^2 + b^2}{2ab}\]where a and b are two distinct numbers such that ab > 0.
Prove the following identity :
`sec^4A - sec^2A = sin^2A/cos^4A`
Prove the following identity :
`(cosecθ)/(tanθ + cotθ) = cosθ`
If tanA + sinA = m and tanA - sinA = n , prove that (`m^2 - n^2)^2` = 16mn
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Choose the correct alternative:
1 + cot2θ = ?
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
Prove the following:
(sin α + cos α)(tan α + cot α) = sec α + cosec α