Advertisements
Advertisements
प्रश्न
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
उत्तर
L.H.S = cot θ + tan θ
= `costheta/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/(sintheta*costheta)`
= `1/(sintheta*costheta)` ......[cos2θ + sin2θ = 1]
= `1/sintheta xx 1/costheta`
= cosecθ × secθ
= R.H.S.
APPEARS IN
संबंधित प्रश्न
If secθ + tanθ = p, show that `(p^{2}-1)/(p^{2}+1)=\sin \theta`
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identity:
`sqrt((1 + sin A)/(1 - sin A)) = sec A + tan A`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If a cos θ + b sin θ = m and a sin θ − b cos θ = n, then a2 + b2 =
Prove the following identity :
`(cosA + sinA)^2 + (cosA - sinA)^2 = 2`
Find x , if `cos(2x - 6) = cos^2 30^circ - cos^2 60^circ`
Evaluate:
sin2 34° + sin2 56° + 2 tan 18° tan 72° – cot2 30°
Prove that:
`(cot A - 1)/(2 - sec^2 A) = cot A/(1 + tan A)`
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
Without using trigonometric table, prove that
`cos^2 26° + cos 64° sin 26° + (tan 36°)/(cot 54°) = 2`
Prove that `sqrt((1 + cos "A")/(1 - cos"A"))` = cosec A + cot A
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
`(cos^2 θ)/(sin^2 θ) - 1/(sin^2 θ)`, in simplified form, is ______.
sec θ when expressed in term of cot θ, is equal to ______.