Advertisements
Advertisements
प्रश्न
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
उत्तर
Given,
tan θ + sec θ = l ...(i)
⇒ `((tan theta + sec theta)(sec theta - tan theta))/((sec theta - tan theta))` = l ...[Multiply by (sec θ – tan θ) on numerator and denominator L.H.S]
⇒ `((sec^2 theta - tan^2 theta))/((sec theta - tan theta))` = l
⇒ `1/(sec theta - tan theta)` = l ...[∵ sec2θ – tan2θ = 1]
⇒ sec θ – tan θ = `1/l` ...(ii)
On adding equations (i) and (ii), we get
2 sec θ = `l + 1/l`
⇒ sec θ = `(l^2 + 1)/(2l)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities:
`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`
`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`
`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`
Prove the following trigonometric identities.
`sin^2 A + 1/(1 + tan^2 A) = 1`
Prove the following trigonometric identities.
`((1 + tan^2 theta)cot theta)/(cosec^2 theta) = tan theta`
Prove the following trigonometric identities.
`(1 + cos theta - sin^2 theta)/(sin theta (1 + cos theta)) = cot theta`
Prove the following trigonometric identities.
`[tan θ + 1/cos θ]^2 + [tan θ - 1/cos θ]^2 = 2((1 + sin^2 θ)/(1 - sin^2 θ))`
Prove the following identities:
`secA/(secA + 1) + secA/(secA - 1) = 2cosec^2A`
`sqrt((1+sin theta)/(1-sin theta)) = (sec theta + tan theta)`
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
What is the value of (1 + cot2 θ) sin2 θ?
Write the value of \[\cot^2 \theta - \frac{1}{\sin^2 \theta}\]
Prove the following Identities :
`(cosecA)/(cotA+tanA)=cosA`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Given `cos38^circ sec(90^circ - 2A) = 1` , Find the value of <A
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
Prove that `tan^3 θ/( 1 + tan^2 θ) + cot^3 θ/(1 + cot^2 θ) = sec θ. cosec θ - 2 sin θ cos θ.`
Prove that sec2θ – cos2θ = tan2θ + sin2θ
If 2sin2β − cos2β = 2, then β is ______.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.
Simplify (1 + tan2θ)(1 – sinθ)(1 + sinθ)
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.