Advertisements
Advertisements
рдкреНрд░рд╢реНрди
`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`
рдЙрддреНрддрд░
LHS= `(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))`
=`(cos^2 theta/sin^2 theta(1/costheta-1))/((+ sin theta)) + (1/cos^2 theta(sin theta -1))/((1+ 1/cos theta))`
=`((cos^2 theta)/(sin^2 theta )((1- cos theta)/(cos theta)))/((1+sin theta))+ (((sin theta -1 ))/(cos ^2theta ))/(((cos theta + 1 )/(cos theta)))`
=`(cos^2 theta (1- cos theta))/(sin^2 theta cos theta (1+ sin theta))+ ((sin theta -1) cos theta)/((cos theta +1 ) cos^2 theta)`
=`(cos theta (1-cos theta))/((1- cos^2 theta)(1+ sin theta)) + ((sin theta -1)cos theta)/((costheta + 1 ) (1- sin^2 theta))`
=`(cos theta (1-cos theta))/((1- cos theta )( 1+ cos theta )(1+ sin theta)) + (-(1 sin theta ) cos theta)/((cos theta +1)(1-sin theta )(1+ sin theta))`
=`cos theta/((1+ cos theta )(1+ sin theta)) - cos theta/((cos theta +1)(1+ sin theta))`
= ЁЭЬГ
= RHS
APPEARS IN
рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди
Prove the following trigonometric identities.
`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`
Prove the following trigonometric identities.
`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
`1+(tan^2 theta)/((1+ sec theta))= sec theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
`If sin theta = cos( theta - 45° ),where theta " is acute, find the value of "theta` .
Prove that:
`(sin^2θ)/(cosθ) + cosθ = secθ`
Define an identity.
If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.
sec4 A − sec2 A is equal to
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.
Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove the following identities.
`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ
Prove that cot2θ – tan2θ = cosec2θ – sec2θ
Prove that
sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`
If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.