рд╣рд┐рдВрджреА

`(Cot^2 Theta ( Sec Theta - 1))/((1+ Sin Theta))+ (Sec^2 Theta(Sin Theta-1))/((1+ Sec Theta))=0` - Mathematics

Advertisements
Advertisements

рдкреНрд░рд╢реНрди

`(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))=0`

рдЙрддреНрддрд░

LHS= `(cot^2 theta ( sec theta - 1))/((1+ sin theta))+ (sec^2 theta(sin theta-1))/((1+ sec theta))`

      =`(cos^2 theta/sin^2 theta(1/costheta-1))/((+ sin theta)) + (1/cos^2 theta(sin theta -1))/((1+ 1/cos theta))`

     =`((cos^2 theta)/(sin^2 theta )((1- cos theta)/(cos theta)))/((1+sin theta))+ (((sin theta -1 ))/(cos ^2theta ))/(((cos theta + 1 )/(cos theta)))`

    =`(cos^2 theta (1- cos theta))/(sin^2 theta cos theta (1+ sin theta))+ ((sin theta -1) cos theta)/((cos theta +1 ) cos^2 theta)`

    =`(cos theta (1-cos theta))/((1- cos^2 theta)(1+ sin theta)) + ((sin theta -1)cos theta)/((costheta + 1 ) (1- sin^2 theta))` 

   =`(cos theta (1-cos theta))/((1- cos theta )( 1+ cos theta )(1+ sin theta)) + (-(1 sin theta ) cos theta)/((cos theta +1)(1-sin theta )(1+ sin theta))`

    =`cos theta/((1+ cos theta )(1+ sin theta)) - cos theta/((cos theta +1)(1+ sin theta))`

    = ЁЭЬГ
    = RHS

shaalaa.com
  рдХреНрдпрд╛ рдЗрд╕ рдкреНрд░рд╢реНрди рдпрд╛ рдЙрддреНрддрд░ рдореЗрдВ рдХреЛрдИ рддреНрд░реБрдЯрд┐ рд╣реИ?
рдЕрдзреНрдпрд╛рдп 8: Trigonometric Identities - Exercises 1

APPEARS IN

рдЖрд░рдПрд╕ рдЕрдЧреНрд░рд╡рд╛рд▓ Mathematics [English] Class 10
рдЕрдзреНрдпрд╛рдп 8 Trigonometric Identities
Exercises 1 | Q 32

рд╡реАрдбрд┐рдпреЛ рдЯреНрдпреВрдЯреЛрд░рд┐рдпрд▓VIEW ALL [6]

рд╕рдВрдмрдВрдзрд┐рдд рдкреНрд░рд╢реНрди

Prove the following trigonometric identities.

`tan^2 theta - sin^2 theta tan^2 theta sin^2 theta`


Prove the following trigonometric identities.

`(1/(sec^2 theta - cos theta) + 1/(cosec^2 theta - sin^2 theta)) sin^2 theta cos^2 theta = (1 - sin^2 theta cos^2 theta)/(2 + sin^2 theta + cos^2 theta)`


Prove the following identities:

`sqrt((1 - cosA)/(1 + cosA)) = cosec A - cot A`


Prove that:

cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A


`1+(tan^2 theta)/((1+ sec theta))= sec theta`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


`If sin theta = cos( theta - 45° ),where   theta   " is   acute, find the value of "theta` .


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


Define an identity.


If sec2 θ (1 + sin θ) (1 − sin θ) = k, then find the value of k.


sec4 A − sec2 A is equal to


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


If tan A + sin A = m and tan A - sin A = n, then show that m2 - n2 = 4 `sqrt(mn)`.


Prove that `(sin 70°)/(cos 20°) + (cosec 20°)/(sec 70°) - 2 cos 70° xx cosec 20°` = 0.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Prove the following identities.

`(1 - tan^2theta)/(cot^2 theta - 1)` = tan2 θ


Prove that cot2θ – tan2θ = cosec2θ – sec2θ 


Prove that

sec2A – cosec2A = `(2sin^2"A" - 1)/(sin^2"A"*cos^2"A")`


If cos 9α = sinα and 9α < 90°, then the value of tan5α is ______.


Share
Notifications

Englishрд╣рд┐рдВрджреАрдорд░рд╛рдареА


      Forgot password?
Use app×