Advertisements
Advertisements
प्रश्न
Define an identity.
उत्तर
An identity is an equation which is true for all values of the variable (s).
For example,
`(x+3)^2=x^2+6x+9`
Any number of variables may involve in an identity.
An example of an identity containing two variables is
`(x+y)^2=x^2+2xy+y^2`
The above are all about algebraic identities. Now, we define the trigonometric identities.
An equation involving trigonometric ratios of an angle 0 (say) is said to be a trigonometric identity if it is satisfied for all valued of 0 for which the trigonometric ratios are defined.
For examples,
\[\sin^2 \theta + \cos^2 \theta = 1\]
\[1 + \tan^2 \theta = \sec^2 \theta\]
\[1 + \cot^2 \theta = {cosec}^2 \theta\]
APPEARS IN
संबंधित प्रश्न
Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following trigonometric identities.
`(cot A + tan B)/(cot B + tan A) = cot A tan B`
Prove the following identities:
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
Prove the following identities:
`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`
`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec theta)`
`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`
Write the value of`(tan^2 theta - sec^2 theta)/(cot^2 theta - cosec^2 theta)`
Write the value of cosec2 (90° − θ) − tan2 θ.
What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]
If sec θ + tan θ = x, then sec θ =
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`
Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that cot2θ × sec2θ = cot2θ + 1
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`