हिंदी

Define an Identity. - Mathematics

Advertisements
Advertisements

प्रश्न

Define an identity.

संक्षेप में उत्तर

उत्तर

An identity is an equation which is true for all values of the variable (s).

For example,

 `(x+3)^2=x^2+6x+9`

Any number of variables may involve in an identity.

An example of an identity containing two variables is

 `(x+y)^2=x^2+2xy+y^2`

The above are all about algebraic identities. Now, we define the trigonometric identities.

An equation involving trigonometric ratios of an angle 0 (say) is said to be a trigonometric identity if it is satisfied for all valued of 0 for which the trigonometric ratios are defined.

For examples,

\[\sin^2 \theta + \cos^2 \theta = 1\]
\[1 + \tan^2 \theta = \sec^2 \theta\]
\[1 + \cot^2 \theta = {cosec}^2 \theta\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
अध्याय 11 Trigonometric Identities
Exercise 11.3 | Q 1 | पृष्ठ ५५

संबंधित प्रश्न

Prove that `sqrt(sec^2 theta + cosec^2 theta) = tan theta + cot theta`


Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)


Prove the following trigonometric identities.

`(cot A + tan B)/(cot B + tan A) = cot A tan B`


Prove the following identities:

`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`


Prove the following identities:

`cot^2A((secA - 1)/(1 + sinA)) + sec^2A((sinA - 1)/(1 + secA)) = 0`


`tan theta /((1 - cot theta )) + cot theta /((1 - tan theta)) = (1+ sec theta cosec  theta)`


`(1-tan^2 theta)/(cot^2-1) = tan^2 theta`


Write the value of`(tan^2 theta  - sec^2 theta)/(cot^2 theta - cosec^2 theta)`


Write the value of cosec2 (90° − θ) − tan2 θ. 


What is the value of \[6 \tan^2 \theta - \frac{6}{\cos^2 \theta}\]


If sec θ + tan θ = x, then sec θ =


Prove the following identity :

sinθcotθ + sinθcosecθ = 1 + cosθ  


Prove the following identity :

`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`


Prove the following identity : 

`sqrt((1 + cosA)/(1 - cosA)) = cosecA + cotA`


Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


Prove that cot2θ × sec2θ = cot2θ + 1


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove that `(1 + sec theta - tan theta)/(1 + sec theta + tan theta) = (1 - sin theta)/cos theta`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×