हिंदी

Express (Sin 67° + Cos 75°) in Terms of Trigonometric Ratios of the Angle Between 0° and 45°. - Mathematics

Advertisements
Advertisements

प्रश्न

Express (sin 67° + cos 75°) in terms of trigonometric ratios of the angle between 0° and 45°.

योग

उत्तर

(sin 67° + cos 75°)
= (sin (90°23°) + cos (90°15°))      .....( sin(90°θ) = cosθ and cos(90°θ) = sinθ)
= (cos 23°+ sin 15°)

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2018-2019 (March) 30/4/3

संबंधित प्रश्न

Prove the following trigonometric identities:

(i) (1 – sin2θ) sec2θ = 1

(ii) cos2θ (1 + tan2θ) = 1


(secA + tanA) (1 − sinA) = ______.


if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`


Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`


Prove the following trigonometric identity.

`(sin theta - cos theta + 1)/(sin theta + cos theta - 1) = 1/(sec theta - tan theta)`


Prove the following trigonometric identities.

`1/(sec A + tan A) - 1/cos A = 1/cos A - 1/(sec A - tan A)`


Prove that  `(sec theta - 1)/(sec theta + 1) = ((sin theta)/(1 + cos theta))^2` 


Prove the following identities:

cosecA – cosec2 A = cot4 A + cot2 A


Prove the following identities:

(sec A – cos A) (sec A + cos A) = sin2 A + tan2


If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.


`(1+ tan^2 theta)/(1+ tan^2 theta)= (cos^2 theta - sin^2 theta)`


Prove that:

`(sin^2θ)/(cosθ) + cosθ = secθ`


Prove the following identity : 

`((1 + tan^2A)cotA)/(cosec^2A) = tanA`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


If tan α = n tan β, sin α = m sin β, prove that cos2 α  = `(m^2 - 1)/(n^2 - 1)`.


Prove that  `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.


Prove that:  `1/(sec θ - tan θ) = sec θ + tan θ`.


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove that sin4A – cos4A = 1 – 2cos2A


If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×