Advertisements
Advertisements
प्रश्न
If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.
उत्तर
Given that,
a sin θ + b cos θ = c
On squaring both sides,
(a . sin θ + cos θ . b)2 = c2
⇒ a2sin2θ + b2cos2θ + 2ab sin θ . cos θ = c2 ...[∵ (x + y)2 = x2 + 2xy + y2]
⇒ a2(1 – cos2θ) + b2(1 – sin2θ) + 2ab sinθ . cosθ = c2 ...[∵ sin2θ + cos2θ = 1]
⇒ a2 – a2 cos2θ + b2 – b2sin2θ + 2ab sinθ . cosθ = c2
⇒ a2 + b2 – c2 = a2cos2θ + b2sin2θ – 2ab sinθ . cosθ
⇒ (a2 + b2 – c2) = (a cos θ – b sin θ)2 ...[∵ a2 + b2 – 2ab = (a – b)2]
⇒ (a cos θ – b sin θ)2 = a2 + b2 – c2
⇒ a cos θ – b sin θ = `sqrt(a^2 + b^2 + c^2)`
Hence proved.
APPEARS IN
संबंधित प्रश्न
As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following identities:
`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`
If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]
If cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to
Prove the following identity :
`(1 - sin^2θ)sec^2θ = 1`
Prove the following identity :
(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`
If x sin3θ + y cos3 θ = sin θ cos θ and x sin θ = y cos θ , then show that x2 + y2 = 1.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove the following identities.
`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec" theta - 1)/("cosec" theta + 1)`
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
If tan θ = `x/y`, then cos θ is equal to ______.