हिंदी

If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = a2+b2-c2. - Mathematics

Advertisements
Advertisements

प्रश्न

If a sinθ + b cosθ = c, then prove that a cosθ – b sinθ = `sqrt(a^2 + b^2 - c^2)`.

योग

उत्तर

Given that,

a sin θ + b cos θ = c

On squaring both sides,

(a . sin θ + cos θ . b)2 = c2

⇒ a2sin2θ + b2cos2θ + 2ab sin θ . cos θ = c2  ...[∵ (x + y)2 = x2 + 2xy + y2]

⇒ a2(1 – cos2θ) + b2(1 – sin2θ) + 2ab sinθ . cosθ = c2  ...[∵ sin2θ + cos2θ = 1]

⇒ a2 – a2 cos2θ + b2 – b2sin2θ + 2ab sinθ . cosθ = c2

⇒ a2 + b2 – c2 = a2cos2θ + b2sin2θ – 2ab sinθ . cosθ

⇒ (a2 + b2 – c2) = (a cos θ – b sin θ)2  ...[∵ a2 + b2 – 2ab = (a – b)2]

⇒ (a cos θ – b sin θ)2 = a2 + b2 – c2

⇒ a cos θ – b sin θ = `sqrt(a^2 + b^2 + c^2)`

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.4 [पृष्ठ ९९]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.4 | Q 11 | पृष्ठ ९९

संबंधित प्रश्न

As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following identities:

`cotA/(1 - tanA) + tanA/(1 - cotA) = 1 + tanA + cotA`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


Write the value of ` sin^2 theta cos^2 theta (1+ tan^2 theta ) (1+ cot^2 theta).`


If x = a sec θ cos ϕ, y = b sec θ sin ϕ and z = c tan θ, then\[\frac{x^2}{a^2} + \frac{y^2}{b^2}\]


If  cos (\[\alpha + \beta\]= 0 , then sin \[\left( \alpha - \beta \right)\] can be reduced to  

 


Prove the following identity :

`(1 - sin^2θ)sec^2θ = 1`


Prove the following identity :

(secA - cosA)(secA + cosA) = `sin^2A + tan^2A`


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


Prove that `sqrt((1 + cos A)/(1 - cos A)) = (tan A + sin A)/(tan A. sin A)`


If x sin3θ + y cos3 θ = sin θ cos θ  and x sin θ = y cos θ , then show that x2 + y2 = 1.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove the following identities.

`(cot theta - cos theta)/(cot theta + cos theta) = ("cosec"  theta - 1)/("cosec"  theta + 1)`


If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ


Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A


If tan θ = `x/y`, then cos θ is equal to ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×