हिंदी

Prove the following: tanA1+secA-tanA1-secA = 2cosec A - Mathematics

Advertisements
Advertisements

प्रश्न

Prove the following:

`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A

योग

उत्तर

L.H.S:

`tanA/(1 + sec A) - tanA/(1 - sec A)`

Taking LCM of the denominators,

= `(tanA(1 - sec A) - tanA(1 + sec A))/((1 + sec A)(1 - sec A))`

Since, (1 + sec A)(1 – sec A) = 1 – sec2A

= `(tan A(1 - secA - 1 - sec A))/(1 - sec^2A)`

= `(tan A(-2 sec A))/(1 - sec^2 A)`

= `(2 tan A  *sec A)/(sec^2 A - 1)`

Since,

sec2A – tan2A = 1

sec2A – 1 = tan2A

= `(2 tan A * sec A)/(tan^2 A)` 

Since, sec A = `(1/cosA)` and tan A = `(sinA/cosA)`

= `(2secA)/tanA = (2cosA)/(cosA sinA)`

= `2/sinA`

= 2 cosec A  ...`(∵ 1/sinA = "cosec" A)`

= R.H.S

Hence proved.

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
अध्याय 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 2 | पृष्ठ ९५

संबंधित प्रश्न

Prove the following identities, where the angles involved are acute angles for which the expressions are defined:

`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.


Prove that `cosA/(1+sinA) + tan A =  secA`


Prove the following trigonometric identities.

`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`


if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`


Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`


Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)

Show that one of the values of each member of this equality is sin α sin β sin γ


Prove the following identities:

cosec A(1 + cos A) (cosec A – cot A) = 1


Prove the following identities:

`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`


If \[sec\theta + tan\theta = x\] then \[tan\theta =\] 


The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is 


\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to 


The value of sin2 29° + sin2 61° is


The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to 


Prove the following identity :

`cosec^4A - cosec^2A = cot^4A + cot^2A`


Prove the following identity :

`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`


Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.


Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.


Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.


`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.

Activity:

`5/(sin^2theta) - 5cot^2theta`

= `square (1/(sin^2theta) - cot^2theta)`

= `5(square - cot^2theta)   ......[1/(sin^2theta) = square]`

= 5(1)

= `square`


Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×