Advertisements
Advertisements
प्रश्न
Prove the following:
`tanA/(1 + sec A) - tanA/(1 - sec A)` = 2cosec A
उत्तर
L.H.S:
`tanA/(1 + sec A) - tanA/(1 - sec A)`
Taking LCM of the denominators,
= `(tanA(1 - sec A) - tanA(1 + sec A))/((1 + sec A)(1 - sec A))`
Since, (1 + sec A)(1 – sec A) = 1 – sec2A
= `(tan A(1 - secA - 1 - sec A))/(1 - sec^2A)`
= `(tan A(-2 sec A))/(1 - sec^2 A)`
= `(2 tan A *sec A)/(sec^2 A - 1)`
Since,
sec2A – tan2A = 1
sec2A – 1 = tan2A
= `(2 tan A * sec A)/(tan^2 A)`
Since, sec A = `(1/cosA)` and tan A = `(sinA/cosA)`
= `(2secA)/tanA = (2cosA)/(cosA sinA)`
= `2/sinA`
= 2 cosec A ...`(∵ 1/sinA = "cosec" A)`
= R.H.S
Hence proved.
APPEARS IN
संबंधित प्रश्न
Prove the following identities, where the angles involved are acute angles for which the expressions are defined:
`(cos A-sinA+1)/(cosA+sinA-1)=cosecA+cotA ` using the identity cosec2 A = 1 cot2 A.
Prove that `cosA/(1+sinA) + tan A = secA`
Prove the following trigonometric identities.
`sin A/(sec A + tan A - 1) + cos A/(cosec A + cot A + 1) = 1`
if `cosec theta - sin theta = a^3`, `sec theta - cos theta = b^3` prove that `a^2 b^2 (a^2 + b^2) = 1`
Prove that `sqrt((1 + cos theta)/(1 - cos theta)) + sqrt((1 - cos theta)/(1 + cos theta)) = 2 cosec theta`
Given that:
(1 + cos α) (1 + cos β) (1 + cos γ) = (1 − cos α) (1 − cos α) (1 − cos β) (1 − cos γ)
Show that one of the values of each member of this equality is sin α sin β sin γ
Prove the following identities:
cosec A(1 + cos A) (cosec A – cot A) = 1
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
If \[sec\theta + tan\theta = x\] then \[tan\theta =\]
The value of (1 + cot θ − cosec θ) (1 + tan θ + sec θ) is
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
The value of sin2 29° + sin2 61° is
The value of sin ( \[{45}^° + \theta) - \cos ( {45}^°- \theta)\] is equal to
Prove the following identity :
`cosec^4A - cosec^2A = cot^4A + cot^2A`
Prove the following identity :
`(sec^2θ - sin^2θ)/tan^2θ = cosec^2θ - cos^2θ`
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
Prove that `cos θ/sin(90° - θ) + sin θ/cos (90° - θ) = 2`.
Without using the trigonometric table, prove that
cos 1°cos 2°cos 3° ....cos 180° = 0.
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
Find the value of sin2θ + cos2θ
Solution:
In Δ ABC, ∠ABC = 90°, ∠C = θ°
AB2 + BC2 = `square` .....(Pythagoras theorem)
Divide both sides by AC2
`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`
∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`
But `"AB"/"AC" = square and "BC"/"AC" = square`
∴ `sin^2 theta + cos^2 theta = square`