हिंदी

Find the value of sin2θ + cos2θ Solution: In Δ ABC, ∠ABC = 90°, ∠C = θ° AB2 + BC2 = □ .....(Pythagoras theorem) Divide both sides by AC2 ABACBCACACACAB2AC2+BC2AC2=AC2AC2 ∴ ABACBCAC(AB2AC2)+(BC2AC2)=1 - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Find the value of sin2θ  + cos2θ

Solution:

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = `square`   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = square and "BC"/"AC" = square`

∴ `sin^2 theta  + cos^2 theta = square` 

रिक्त स्थान भरें
योग

उत्तर

In Δ ABC, ∠ABC = 90°, ∠C = θ°

AB2 + BC2 = AC2   .....(Pythagoras theorem)

Divide both sides by AC2

`"AB"^2/"AC"^2 + "BC"^2/"AC"^2 = "AC"^2/"AC"^2`

∴ `("AB"^2/"AC"^2) + ("BC"^2/"AC"^2) = 1`

But `"AB"/"AC" = bbunderline(sintheta) and "BC"/"AC" = bbunderline(costheta)`

∴ `sin^2 theta  + cos^2 theta = bbunderline1` 

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
2023-2024 (March) Official

संबंधित प्रश्न

Prove that:

sec2θ + cosec2θ = sec2θ x cosec2θ


Prove the following identities:

`( i)sin^{2}A/cos^{2}A+\cos^{2}A/sin^{2}A=\frac{1}{sin^{2}Acos^{2}A)-2`

`(ii)\frac{cosA}{1tanA}+\sin^{2}A/(sinAcosA)=\sin A\text{}+\cos A`

`( iii)((1+sin\theta )^{2}+(1sin\theta)^{2})/cos^{2}\theta =2( \frac{1+sin^{2}\theta}{1-sin^{2}\theta } )`


Prove the following trigonometric identities. `(1 - cos A)/(1 + cos A) = (cot A - cosec A)^2`


Prove the following trigonometric identities.

`1 + cot^2 theta/(1 + cosec theta) = cosec theta`


if `x/a cos theta + y/b sin theta = 1` and `x/a sin theta - y/b cos theta = 1` prove that `x^2/a^2 + y^2/b^2  = 2`


Prove the following identities:

cot2 A – cos2 A = cos2 A . cot2 A


Prove that:

`tanA/(1 - cotA) + cotA/(1 - tanA) = secA cosecA + 1`


If `( cos theta + sin theta) = sqrt(2) sin theta , " prove that " ( sin theta - cos theta ) = sqrt(2) cos theta`


Prove the following identity :

`cos^4A - sin^4A = 2cos^2A - 1`


Prove the following identity : 

`sec^4A - sec^2A = sin^2A/cos^4A`


Evaluate:

sin2 34° + sin56° + 2 tan 18° tan 72° – cot30°


Prove that sec θ. cosec (90° - θ) - tan θ. cot( 90° - θ ) = 1.


Prove that `((1 + sin θ - cos θ)/( 1 + sin θ + cos θ))^2 = (1 - cos θ)/(1 + cos θ)`.


If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2


If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to


Choose the correct alternative:

sec 60° = ?


Show that tan4θ + tan2θ = sec4θ – sec2θ.


(1 – cos2 A) is equal to ______.


Prove that (sec θ + tan θ) (1 – sin θ) = cos θ


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×