Advertisements
Advertisements
प्रश्न
Prove that:
sec2θ + cosec2θ = sec2θ x cosec2θ
उत्तर
L.H.S = sec2θ + cosec2θ
= 1 + tan2θ + 1 + cot2θ .....[∵ sec2θ = 1 + tan2θ and cosec2θ = 1 + cot2θ]
= 2 + tan2θ + cot2θ .....(i)
R.H.S = sec2θ x cosec2θ
= (1 + tan2θ) x (1 + cot2θ) .....[∵ sec2θ = 1 + tan2θ and cosec2θ = 1 + cot2θ]
= 1 + cot2θ + tan2θ + tan2θ x cot2θ
= 1 + cot2θ + tan2θ + tan2θ x (1/tan2θ) ...... [∵ cot2θ = 1/tan2θ]
= 2 + tan2θ + cot2θ .......(ii)
From (i) and (ii)
sec2θ + cosec2θ = sec2θ x cosec2θ
APPEARS IN
संबंधित प्रश्न
if `cos theta = 5/13` where `theta` is an acute angle. Find the value of `sin theta`
Prove the following trigonometric identities
(1 + cot2 A) sin2 A = 1
Prove the following trigonometric identities.
`cosec theta sqrt(1 - cos^2 theta) = 1`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following trigonometric identities.
(cosec θ − sec θ) (cot θ − tan θ) = (cosec θ + sec θ) ( sec θ cosec θ − 2)
Prove the following identities:
`tan^2A - tan^2B = (sin^2A - sin^2B)/(cos^2A * cos^2B)`
Prove that:
(1 + tan A . tan B)2 + (tan A – tan B)2 = sec2 A sec2 B
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
What is the value of (1 − cos2 θ) cosec2 θ?
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If A = 60°, B = 30° verify that tan( A - B) = `(tan A - tan B)/(1 + tan A. tan B)`.
Prove that: `(sin A + cos A)/(sin A - cos A) + (sin A - cos A)/(sin A + cos A) = 2/(sin^2 A - cos^2 A)`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
Prove the following identities.
sec6 θ = tan6 θ + 3 tan2 θ sec2 θ + 1
If sec θ = `41/40`, then find values of sin θ, cot θ, cosec θ
If tan θ = 3, then `(4 sin theta - cos theta)/(4 sin theta + cos theta)` is equal to ______.
If tan θ + sec θ = l, then prove that sec θ = `(l^2 + 1)/(2l)`.
(1 + sin A)(1 – sin A) is equal to ______.