Advertisements
Advertisements
प्रश्न
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
उत्तर
sin6θ + cos6θ
= (sin2θ)3 + (cos2θ)3
= (sin2θ + cos2θ)(sin4θ + cos2θ - sin2θcos2θ)
= 1 x [(sin2θ)2 + (cos2θ)2 + 2sin2θ.cos2θ - 3sin2θ.cos2θ]
= (sin2θ)2 + (cos2θ)2 - 3sin2θ.cos2θ
= 1 - 3sin2θ cos2θ.
= RHS
APPEARS IN
संबंधित प्रश्न
If tanθ + sinθ = m and tanθ – sinθ = n, show that `m^2 – n^2 = 4\sqrt{mn}.`
9 sec2 A − 9 tan2 A = ______.
Prove the following identities:
sec2 A . cosec2 A = tan2 A + cot2 A + 2
Prove the following identities:
`sqrt((1 - sinA)/(1 + sinA)) = cosA/(1 + sinA)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
If ` cot A= 4/3 and (A+ B) = 90° ` ,what is the value of tan B?
Prove the following identity :
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If sin θ + cos θ = a and sec θ + cosec θ = b , then the value of b(a2 – 1) is equal to
Prove that cot2θ – tan2θ = cosec2θ – sec2θ