Advertisements
Advertisements
प्रश्न
Write the value of `3 cot^2 theta - 3 cosec^2 theta.`
उत्तर
`3 cot^2 theta - 3 cosec ^2 theta`
= `3 ( cot^2 theta - cosec ^2 theta )`
= 3(-1)
=-3
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`(cos theta - sin theta + 1)/(cos theta + sin theta - 1) = cosec theta + cot theta`
Prove that
`sqrt((1 + sin θ)/(1 - sin θ)) + sqrt((1 - sin θ)/(1 + sin θ)) = 2 sec θ`
Prove that:
`(cos^3A + sin^3A)/(cosA + sinA) + (cos^3A - sin^3A)/(cosA - sinA) = 2`
Prove the following identities:
`sqrt((1 + sinA)/(1 - sinA)) = cosA/(1 - sinA)`
Prove the following identities:
`sqrt((1 - cosA)/(1 + cosA)) = sinA/(1 + cosA)`
If 4 cos2 A – 3 = 0, show that: cos 3 A = 4 cos3 A – 3 cos A
`(cot ^theta)/((cosec theta+1)) + ((cosec theta + 1))/cot theta = 2 sec theta`
`(sec theta -1 )/( sec theta +1) = ( sin ^2 theta)/( (1+ cos theta )^2)`
If `sin theta = x , " write the value of cot "theta .`
Prove that secθ + tanθ =`(costheta)/(1-sintheta)`.
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
Prove the following identity :
`sinθ(1 + tanθ) + cosθ(1 +cotθ) = secθ + cosecθ`
Prove the following identity :
`sinA/(1 + cosA) + (1 + cosA)/sinA = 2cosecA`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Find the value of ( sin2 33° + sin2 57°).
Prove that 2(sin6A + cos6A) – 3(sin4A + cos4A) + 1 = 0
If 1 + sin2α = 3 sinα cosα, then values of cot α are ______.
Prove the following:
`sintheta/(1 + cos theta) + (1 + cos theta)/sintheta` = 2cosecθ
Proved that `(1 + secA)/secA = (sin^2A)/(1 - cos A)`.