Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
उत्तर
\[\sin\theta = x + \frac{1}{x}\]
\[ \Rightarrow - 1 \leq x + \frac{1}{x} \leq 1\]
\[ \Rightarrow x + \frac{1}{x} \leq 1\]
\[ \Rightarrow x^2 + 1 \leq x\]
\[ \Rightarrow x^2 + 1 - x \leq 0\]
\[\text{ Take } x = 1, \]
\[ \Rightarrow 1 + 1 - 1 \leq 0\]
\[ \Rightarrow 1 \leq 0\]
\[\text{ Which is false, so x is not always a positive real number . \]
\[The given statement is false } .\]
APPEARS IN
संबंधित प्रश्न
Evaluate
`(sin ^2 63^@ + sin^2 27^@)/(cos^2 17^@+cos^2 73^@)`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
`(1 + cot^2 theta ) sin^2 theta =1`
`1+((tan^2 theta) cot theta)/(cosec^2 theta) = tan theta`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`{1/((sec^2 theta- cos^2 theta))+ 1/((cosec^2 theta - sin^2 theta))} ( sin^2 theta cos^2 theta) = (1- sin^2 theta cos ^2 theta)/(2+ sin^2 theta cos^2 theta)`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
\[\frac{\sin \theta}{1 + \cos \theta}\]is equal to
If sin θ − cos θ = 0 then the value of sin4θ + cos4θ
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`(cosecA)/(cosecA - 1) + (cosecA)/(cosecA + 1) = 2sec^2A`
Prove the following identity :
`(secθ - tanθ)^2 = (1 - sinθ)/(1 + sinθ)`
Prove the following identity :
`1/(sinA + cosA) + 1/(sinA - cosA) = (2sinA)/(1 - 2cos^2A)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that: `(sec θ - tan θ)/(sec θ + tan θ ) = 1 - 2 sec θ.tan θ + 2 tan^2θ`
Prove that `( tan A + sec A - 1)/(tan A - sec A + 1) = (1 + sin A)/cos A`.
If `(cos alpha)/(cos beta)` = m and `(cos alpha)/(sin beta)` = n, then prove that (m2 + n2) cos2 β = n2
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1