मराठी

Write True' or False' and justify your answer the following : The value of sin θ is x + 1 x where 'x' is a positive real number - Mathematics

Advertisements
Advertisements

प्रश्न

 Write True' or False' and justify your answer  the following : 

The value of  \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x'  is a positive real number . 

चूक किंवा बरोबर

उत्तर

\[\sin\theta = x + \frac{1}{x}\]
\[ \Rightarrow - 1 \leq x + \frac{1}{x} \leq 1\]
\[ \Rightarrow x + \frac{1}{x} \leq 1\]
\[ \Rightarrow x^2 + 1 \leq x\]
\[ \Rightarrow x^2 + 1 - x \leq 0\]
\[\text{ Take } x = 1, \]
\[ \Rightarrow 1 + 1 - 1 \leq 0\]
\[ \Rightarrow 1 \leq 0\]
\[\text{ Which is false, so x is not always a positive real number . \]
\[The given statement is false } .\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 11: Trigonometric Identities - Exercise 11.3 [पृष्ठ ५६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 10
पाठ 11 Trigonometric Identities
Exercise 11.3 | Q 24.1 | पृष्ठ ५६

संबंधित प्रश्‍न

Prove the following trigonometric identities.

`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove that:

`cot^2A/(cosecA - 1) - 1 = cosecA`


`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`


`(tan A + tanB )/(cot A + cot B) = tan A tan B`


Write the value of `(1 + cot^2 theta ) sin^2 theta`. 


If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`


Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:

sin θ × cosec θ = ______


The value of sin2 29° + sin2 61° is


Prove the following identity : 

`sqrt(cosec^2q - 1) = "cosq  cosecq"`


For ΔABC , prove that : 

`sin((A + B)/2) = cos"C/2`


If x = h + a cos θ, y = k + b sin θ. 
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.


Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.


Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ. 


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1


Choose the correct alternative:

sin θ = `1/2`, then θ = ?


If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ

Activity:

`square` = 1 + tan2θ    ......[Fundamental trigonometric identity]

`square` – tan2θ = 1

(sec θ + tan θ) . (sec θ – tan θ) = `square`

`sqrt(3)*(sectheta - tan theta)` = 1

(sec θ – tan θ) = `square`


Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B


Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×