Advertisements
Advertisements
प्रश्न
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
उत्तर
\[\sin\theta = x + \frac{1}{x}\]
\[ \Rightarrow - 1 \leq x + \frac{1}{x} \leq 1\]
\[ \Rightarrow x + \frac{1}{x} \leq 1\]
\[ \Rightarrow x^2 + 1 \leq x\]
\[ \Rightarrow x^2 + 1 - x \leq 0\]
\[\text{ Take } x = 1, \]
\[ \Rightarrow 1 + 1 - 1 \leq 0\]
\[ \Rightarrow 1 \leq 0\]
\[\text{ Which is false, so x is not always a positive real number . \]
\[The given statement is false } .\]
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 - sin theta)/(1 + sin theta) = (sec theta - tan theta)^2`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove that:
`cot^2A/(cosecA - 1) - 1 = cosecA`
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
`(tan A + tanB )/(cot A + cot B) = tan A tan B`
Write the value of `(1 + cot^2 theta ) sin^2 theta`.
If 5x = sec ` theta and 5/x = tan theta , " find the value of 5 "( x^2 - 1/( x^2))`
Four alternative answers for the following question are given. Choose the correct alternative and write its alphabet:
sin θ × cosec θ = ______
The value of sin2 29° + sin2 61° is
Prove the following identity :
`sqrt(cosec^2q - 1) = "cosq cosecq"`
For ΔABC , prove that :
`sin((A + B)/2) = cos"C/2`
If x = h + a cos θ, y = k + b sin θ.
Prove that `((x - h)/a)^2 + ((y - k)/b)^2 = 1`.
Prove that: `(1 + cot^2 θ/(1 + cosec θ)) = cosec θ`.
Prove that: sin6θ + cos6θ = 1 - 3sin2θ cos2θ.
If sec θ = `25/7`, find the value of tan θ.
Solution:
1 + tan2 θ = sec2 θ
∴ 1 + tan2 θ = `(25/7)^square`
∴ tan2 θ = `625/49 - square`
= `(625 - 49)/49`
= `square/49`
∴ tan θ = `square/7` ........(by taking square roots)
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
Choose the correct alternative:
sin θ = `1/2`, then θ = ?
If sec θ + tan θ = `sqrt(3)`, complete the activity to find the value of sec θ – tan θ
Activity:
`square` = 1 + tan2θ ......[Fundamental trigonometric identity]
`square` – tan2θ = 1
(sec θ + tan θ) . (sec θ – tan θ) = `square`
`sqrt(3)*(sectheta - tan theta)` = 1
(sec θ – tan θ) = `square`
Prove that `(1 + sin "B")/"cos B" + "cos B"/(1 + sin "B")` = 2 sec B
Which of the following is true for all values of θ (0° ≤ θ ≤ 90°)?