Advertisements
Advertisements
प्रश्न
If sin θ + sin2 θ = 1 show that: cos2 θ + cos4 θ = 1
उत्तर
sin θ + sin2 θ = 1 ......[Given]
∴ sin θ = 1 − sin2 θ
∴ sin θ = cos2 θ ......[∵ 1 − sin2 θ = cos2 θ]
∴ sin2 θ = cos4 θ ......[Squaring both the sides]
∴ 1 − cos2 θ = cos4 θ ......[∵ sin2 θ = 1 − cos2 θ]
∴ 1 = cos2 θ + cos4 θ
∴ cos2 θ + cos4 θ = 1
APPEARS IN
संबंधित प्रश्न
Prove that sin6θ + cos6θ = 1 – 3 sin2θ. cos2θ.
Prove the following identities:
`(i) 2 (sin^6 θ + cos^6 θ) –3(sin^4 θ + cos^4 θ) + 1 = 0`
`(ii) (sin^8 θ – cos^8 θ) = (sin^2 θ – cos^2 θ) (1 – 2sin^2 θ cos^2 θ)`
Without using trigonometric tables evaluate
`(sin 35^@ cos 55^@ + cos 35^@ sin 55^@)/(cosec^2 10^@ - tan^2 80^@)`
Prove the following trigonometric identities.
(sec2 θ − 1) (cosec2 θ − 1) = 1
Prove the following trigonometric identities.
`sin theta/(1 - cos theta) = cosec theta + cot theta`
Prove the following trigonometric identities.
sec A (1 − sin A) (sec A + tan A) = 1
Prove the following identities:
cot2 A – cos2 A = cos2 A . cot2 A
Prove the following identities:
(sec A – cos A) (sec A + cos A) = sin2 A + tan2 A
`(sec^2 theta-1) cot ^2 theta=1`
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
`cot theta/((cosec theta + 1) )+ ((cosec theta +1 ))/ cot theta = 2 sec theta `
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`cosecA + cotA = 1/(cosecA - cotA)`
For ΔABC , prove that :
`tan ((B + C)/2) = cot "A/2`
Without using trigonometric identity , show that :
`cos^2 25^circ + cos^2 65^circ = 1`
Prove that :
2(sin6 θ + cos6 θ) − 3 (sin4 θ + cos4 θ) + 1 = 0
Prove that `sin^2 θ/ cos^2 θ + cos^2 θ/sin^2 θ = 1/(sin^2 θ. cos^2 θ) - 2`.
`5/(sin^2theta) - 5cot^2theta`, complete the activity given below.
Activity:
`5/(sin^2theta) - 5cot^2theta`
= `square (1/(sin^2theta) - cot^2theta)`
= `5(square - cot^2theta) ......[1/(sin^2theta) = square]`
= 5(1)
= `square`
If 4 tanβ = 3, then `(4sinbeta-3cosbeta)/(4sinbeta+3cosbeta)=` ______.
Given that sinθ + 2cosθ = 1, then prove that 2sinθ – cosθ = 2.