Advertisements
Advertisements
प्रश्न
`1/((1+tan^2 theta)) + 1/((1+ tan^2 theta))`
उत्तर
LHS=` 1/((1+ tan^2 theta))+1/((1+ cot^2 theta))`
=`1/sec^2 theta + 1/(cosec^2 theta)`
=` cos^2 theta + sin^2 theta`
=1
=RHS
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + tan^2 A) + (1 + 1/tan^2 A) = 1/(sin^2 A - sin^4 A)`
Prove the following trigonometric identities.
`tan A/(1 + tan^2 A)^2 + cot A/((1 + cot^2 A)) = sin A cos A`
Prove the following trigonometric identities
If x = a sec θ + b tan θ and y = a tan θ + b sec θ, prove that x2 − y2 = a2 − b2
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Write the value of `cosec^2 theta (1+ cos theta ) (1- cos theta).`
If \[\sin \theta = \frac{1}{3}\] then find the value of 9tan2 θ + 9.
Prove the following identity :
sinθcotθ + sinθcosecθ = 1 + cosθ
Prove the following identity :
`(sinA + cosA)/(sinA - cosA) + (sinA - cosA)/(sinA + cosA) = 2/(2sin^2A - 1)`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
If `asin^2θ + bcos^2θ = c and p sin^2θ + qcos^2θ = r` , prove that (b - c)(r - p) = (c - a)(q - r)
Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.
If `sqrt(3)` sin θ – cos θ = θ, then show that tan 3θ = `(3tan theta - tan^3 theta)/(1 - 3 tan^2 theta)`
a cot θ + b cosec θ = p and b cot θ + a cosec θ = q then p2 – q2 is equal to
Prove that `cot^2 "A" [(sec "A" - 1)/(1 + sin "A")] + sec^2 "A" [(sin"A" - 1)/(1 + sec"A")]` = 0
Prove that `(tan^2 theta - 1)/(tan^2 theta + 1)` = 1 – 2 cos2θ
Prove that `1/("cosec" theta - cot theta)` = cosec θ + cot θ
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
If sin A = `1/2`, then the value of sec A is ______.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.
Eliminate θ if x = r cosθ and y = r sinθ.