मराठी

Prove that Sin2 5° + Sin2 10° .......... + Sin2 85° + Sin2 90° = 9 1/2 - Mathematics

Advertisements
Advertisements

प्रश्न

Prove that sin2 5° + sin2 10° .......... + sin2 85° + sin2 90° = `9 1/2`.

बेरीज

उत्तर

LHS

= sin2 5° + sin2 10° + sin2 15° + sin2 20° + sin2 25° + sin2 30° + sin2 35°+ sin2 40° + sin 2 45° + sin2 50° + sin2 55° + sin2 60° + sin2 65° + sin2 70° + sin2 75° + sin2 80° + sin2 85° + sin2 90°.

= (sin2 5° + sin2 85°) + (sin2 10° + sin2 80°) + (sin2 15° + sin2 75° ) + (sin2 20°+ sin2 70°) + (sin2 25° + sin2 65°) + (sin2 30° + sin2 60°) + (sin2 35° + sin2 55°) + (sin2 40° + sin2 50°) + sin 2 45° + sin2 90°.

= (sin2 5° + cos2 5°) + (sin2 10° + cos2 10°) + (sin2 15° + cos2 15° ) + (sin2 20°+ cos2 20°) + (sin2 25° + cos2 25°) + (sin2 30° + cos2 30°) + (sin2 35° + cos2 35°) + (sin2 40° + cos2 40°) +`(1/sqrt2)^2 + (1)^2 ....[ ∵ sin(90° - θ) = cos θ ∵ sin 90° = 1 and sin 45° = 1/sqrt2  ] [∵ sin^2 θ + cos^2 θ = 1]`

= 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + `1/2` + 1

= `9 1/2`

= RHS

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 18: Trigonometry - Exercise 2

APPEARS IN

आईसीएसई Mathematics [English] Class 10
पाठ 18 Trigonometry
Exercise 2 | Q 66

संबंधित प्रश्‍न

As observed from the top of an 80 m tall lighthouse, the angles of depression of two ships on the same side of the lighthouse of the horizontal line with its base are 30° and 40° respectively. Find the distance between the two ships. Give your answer correct to the nearest meter.


Prove the following trigonometric identities.

`tan theta + 1/tan theta = sec theta cosec theta`


Prove the following identities:

`sinA/(1 + cosA) = cosec A - cot A`


Find the value of `(cos 38° cosec 52°)/(tan 18° tan 35° tan 60° tan 72° tan 55°)`


If sec θ + tan θ = m, show that `(m^2 - 1)/(m^2 + 1) = sin theta`


Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.


If sec θ = `25/7`, find the value of tan θ.

Solution:

1 + tan2 θ = sec2 θ

∴ 1 + tan2 θ = `(25/7)^square`

∴ tan2 θ = `625/49 - square`

= `(625 - 49)/49`

= `square/49`

∴ tan θ = `square/7` ........(by taking square roots)


If 3 sin θ = 4 cos θ, then sec θ = ?


tan2θ – sin2θ = tan2θ × sin2θ. For proof of this complete the activity given below.

Activity:

L.H.S = `square`

= `square (1 - (sin^2theta)/(tan^2theta))`

= `tan^2theta (1 - square/((sin^2theta)/(cos^2theta)))`

= `tan^2theta (1 - (sin^2theta)/1 xx (cos^2theta)/square)`

= `tan^2theta (1 - square)`

= `tan^2theta xx square`    .....[1 – cos2θ = sin2θ]

= R.H.S


Let α, β be such that π < α – β < 3π. If sin α + sin β = `-21/65` and cos α + cos β = `-27/65`, then the value of `cos  (α - β)/2` is ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×