Advertisements
Advertisements
प्रश्न
Prove that (cosec A - sin A)( sec A - cos A) sec2 A = tan A.
उत्तर
LHS = (cosec A - sin A)(sec A - cos A). sec2A
= `(1/sin A - sin A).(1/cos A - cos A). 1/cos^2 A`
= `(1- sin^2A)/sin A.(1- cos^2 A)/(cos A) xx 1/cos^2 A`
= `cos^2 A/sin A xx sin^2 A/cos A xx 1/cos^2 A ....[ ∵ ( 1 - sin^2 A) = cos^2 A, 1 - cos^2 A = sin^2 A]`
= `sin A/cos A = tan A`
= RHS
Hence proved.
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove that:
`cosA/(1 + sinA) = secA - tanA`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
What is the value of 9cot2 θ − 9cosec2 θ?
Prove that: `sqrt((1 - cos θ)/(1 + cos θ)) = cosec θ - cot θ`.
If A + B = 90°, show that `(sin B + cos A)/sin A = 2tan B + tan A.`
Prove the following identities: sec2 θ + cosec2 θ = sec2 θ cosec2 θ.
Prove the following identities:
`(1 - tan^2 θ)/(cot^2 θ - 1) = tan^2 θ`.
If 3 sin θ = 4 cos θ, then sec θ = ?
If 2 cos θ + sin θ = `1(θ ≠ π/2)`, then 7 cos θ + 6 sin θ is equal to ______.