Advertisements
Advertisements
प्रश्न
Prove that:
`cosA/(1 + sinA) = secA - tanA`
उत्तर
`cosA/(1+sinA)`
= `cosA/(1 + sinA) xx (1 - sinA)/(1 - sinA)`
= `(cosA(1 - sinA))/(1 - sin^2A)`
= `(cosA(1 - sinA))/(cos^2A)`
= `(1-sinA)/cosA`
= sec A – tan A
APPEARS IN
संबंधित प्रश्न
If acosθ – bsinθ = c, prove that asinθ + bcosθ = `\pm \sqrt{a^{2}+b^{2}-c^{2}`
Prove that:
(sec A − tan A)2 (1 + sin A) = (1 − sin A)
`(tan^2theta)/((1+ tan^2 theta))+ cot^2 theta/((1+ cot^2 theta))=1`
If`( 2 sin theta + 3 cos theta) =2 , " prove that " (3 sin theta - 2 cos theta) = +- 3.`
What is the value of 9cot2 θ − 9cosec2 θ?
Prove the following identity :
`(sinA - sinB)/(cosA + cosB) + (cosA - cosB)/(sinA + sinB) = 0`
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
Prove that `((tan 20°)/(cosec 70°))^2 + ((cot 20°)/(sec 70°))^2 = 1`
Prove the following identities.
`sqrt((1 + sin theta)/(1 - sin theta)` = sec θ + tan θ