Advertisements
Advertisements
प्रश्न
Prove that:
cos A (1 + cot A) + sin A (1 + tan A) = sec A + cosec A
उत्तर
L.H.S. = cos A (1 + cot A) + sin A (1 + tan A)
= `cosA(1 + cosA/sinA) + sinA(1 + sinA/cosA)`
= `(cosA(sinA + cosA))/sinA + (sinA(cosA + sinA))/cosA`
= `(sinA + cosA)[cosA/sinA + sinA/cosA]`
= `(sinA + cosA)[(cos^2A + sin^2A)/(sinAcosA)]`
= `(sinA + cosA) xx 1/(sinAcosA)`
= `(sinA + cosA)/(sinAcosA)` ...[∵ cos2θ + sin2θ = 1]
= `sinA/(sinAcosA) + cosA/(sinAcosA)`
= `1/cosA + 1/sinA`
= sec A + cosec A = R.H.S.
APPEARS IN
संबंधित प्रश्न
If sinθ = `11/61`, find the values of cosθ using trigonometric identity.
If sinA + cosA = `sqrt(2)` , prove that sinAcosA = `1/2`
Prove that cot θ. tan (90° - θ) - sec (90° - θ). cosec θ + 1 = 0.
Prove that : `tan"A"/(1 - cot"A") + cot"A"/(1 - tan"A") = sec"A".cosec"A" + 1`.
Prove the following identities.
cot θ + tan θ = sec θ cosec θ
Prove the following identities.
`costheta/(1 + sintheta)` = sec θ – tan θ
If sin θ (1 + sin2 θ) = cos2 θ, then prove that cos6 θ – 4 cos4 θ + 8 cos2 θ = 4
Choose the correct alternative:
1 + cot2θ = ?
Prove that sec2θ + cosec2θ = sec2θ × cosec2θ
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.