मराठी

If θ3tanθ = 1, then find the value of sin2θ – cos2θ. - Mathematics

Advertisements
Advertisements

प्रश्न

If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.

बेरीज

उत्तर

Given that,

`sqrt(3) tan θ` = 1

⇒ tan θ = `1/sqrt(3)` = tan 30°

⇒ θ = 30°

Now, sin2θ – cos2θ = sin230° – cos230°

= `(1/2)^2 - (sqrt(3)/2)^2`

= `1/4 - 3/4`

= `(1 - 3)/4`

= `-2/4`

= `-1/2`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 8: Introduction To Trigonometry and Its Applications - Exercise 8.3 [पृष्ठ ९५]

APPEARS IN

एनसीईआरटी एक्झांप्लर Mathematics [English] Class 10
पाठ 8 Introduction To Trigonometry and Its Applications
Exercise 8.3 | Q 9 | पृष्ठ ९५

संबंधित प्रश्‍न

 

If `sec alpha=2/sqrt3`  , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.

 

Prove the following trigonometric identities.

`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`


Prove the following identities:

`(sinAtanA)/(1 - cosA) = 1 + secA`


Prove the following identities:

`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`


`(sec^2 theta -1)(cosec^2 theta - 1)=1`


`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`


9 sec2 A − 9 tan2 A is equal to


Prove the following identity :

`(1 - cos^2θ)sec^2θ = tan^2θ`


Prove the following identity :

`sec^2A + cosec^2A = sec^2Acosec^2A`


Prove the following identity : 

`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`


Prove the following identity :

`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`


Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`


Find the value of ( sin2 33° + sin2 57°).


There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.


If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.


Prove the following identities.

(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2


Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`


If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`


If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×