Advertisements
Advertisements
प्रश्न
If `sqrt(3) tan θ` = 1, then find the value of sin2θ – cos2θ.
उत्तर
Given that,
`sqrt(3) tan θ` = 1
⇒ tan θ = `1/sqrt(3)` = tan 30°
⇒ θ = 30°
Now, sin2θ – cos2θ = sin230° – cos230°
= `(1/2)^2 - (sqrt(3)/2)^2`
= `1/4 - 3/4`
= `(1 - 3)/4`
= `-2/4`
= `-1/2`
APPEARS IN
संबंधित प्रश्न
If `sec alpha=2/sqrt3` , then find the value of `(1-cosecalpha)/(1+cosecalpha)` where α is in IV quadrant.
Prove the following trigonometric identities.
`cos theta/(1 + sin theta) = (1 - sin theta)/cos theta`
Prove the following identities:
`(sinAtanA)/(1 - cosA) = 1 + secA`
Prove the following identities:
`(costhetacottheta)/(1 + sintheta) = cosectheta - 1`
`(sec^2 theta -1)(cosec^2 theta - 1)=1`
`(1+ cos theta)(1- costheta )(1+cos^2 theta)=1`
9 sec2 A − 9 tan2 A is equal to
Prove the following identity :
`(1 - cos^2θ)sec^2θ = tan^2θ`
Prove the following identity :
`sec^2A + cosec^2A = sec^2Acosec^2A`
Prove the following identity :
`(cotA + cosecA - 1)/(cotA - cosecA + 1) = (cosA + 1)/sinA`
Prove the following identity :
`(tanθ + sinθ)/(tanθ - sinθ) = (secθ + 1)/(secθ - 1)`
Find the value of x , if `cosx = cos60^circ cos30^circ - sin60^circ sin30^circ`
Find the value of ( sin2 33° + sin2 57°).
There are two poles, one each on either bank of a river just opposite to each other. One pole is 60 m high. From the top of this pole, the angle of depression of the top and foot of the other pole are 30° and 60° respectively. Find the width of the river and height of the other pole.
If A = 30°, verify that `sin 2A = (2 tan A)/(1 + tan^2 A)`.
Prove the following identities.
(sin θ + sec θ)2 + (cos θ + cosec θ)2 = 1 + (sec θ + cosec θ)2
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
If cos A = `(2sqrt("m"))/("m" + 1)`, then prove that cosec A = `("m" + 1)/("m" - 1)`
If sin θ + cos θ = `sqrt(3)`, then show that tan θ + cot θ = 1
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.