Advertisements
Advertisements
प्रश्न
Prove that cosec θ – cot θ = `sin theta/(1 + cos theta)`
उत्तर
L.H.S = cosec θ – cot θ
= `1/sintheta - costheta/sintheta`
= `(1 -costheta)/sintheta`
= `(1 - costheta)/sintheta xx (1 + costheta)/(1 +costheta)` .....[On rationalising the numerator]
= `(1 - cos^2theta)/(sintheta(1 +costheta))`
= `(sin^2theta)/(sintheta(1 + costheta))` .....`[(because sin^2theta + cos^2theta = 1),(therefore 1 - cos^2theta = sin^2theta)]`
= `sintheta/(1 + costheta)`
= R.H.S
∴ cosec θ – cot θ = `sin theta/(1 + cos theta)`
APPEARS IN
संबंधित प्रश्न
Prove the following trigonometric identities.
`(1 + sin theta)/cos theta + cos theta/(1 + sin theta) = 2 sec theta`
Prove the following trigonometric identities.
`(1 + cos A)/sin A = sin A/(1 - cos A)`
If `cosA/cosB = m` and `cosA/sinB = n`, show that : (m2 + n2) cos2 B = n2.
Prove that:
`1/(sinA - cosA) - 1/(sinA + cosA) = (2cosA)/(2sin^2A - 1)`
`(sin theta)/((sec theta + tan theta -1)) + cos theta/((cosec theta + cot theta -1))=1`
Write the value of `( 1- sin ^2 theta ) sec^2 theta.`
Write the value of `(sin^2 theta 1/(1+tan^2 theta))`.
Write the value of ` sec^2 theta ( 1+ sintheta )(1- sintheta).`
Write True' or False' and justify your answer the following :
The value of \[\sin \theta\] is \[x + \frac{1}{x}\] where 'x' is a positive real number .
\[\frac{\tan \theta}{\sec \theta - 1} + \frac{\tan \theta}{\sec \theta + 1}\] is equal to
Prove the following identity :
`tan^2A - sin^2A = tan^2A.sin^2A`
Prove the following identity :
`((1 + tan^2A)cotA)/(cosec^2A) = tanA`
If secθ + tanθ = m , secθ - tanθ = n , prove that mn = 1
If x = r sin θ cos Φ, y = r sin θ sin Φ and z = r cos θ, prove that x2 + y2 + z2 = r2.
To prove cot θ + tan θ = cosec θ × sec θ, complete the activity given below.
Activity:
L.H.S = `square`
= `square/sintheta + sintheta/costheta`
= `(cos^2theta + sin^2theta)/square`
= `1/(sintheta*costheta)` ......`[cos^2theta + sin^2theta = square]`
= `1/sintheta xx 1/square`
= `square`
= R.H.S
If 2sin2β − cos2β = 2, then β is ______.
The value of the expression [cosec(75° + θ) – sec(15° – θ) – tan(55° + θ) + cot(35° – θ)] is ______.
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
If cot θ = `40/9`, find the values of cosec θ and sinθ,
We have, 1 + cot2θ = cosec2θ
1 + `square` = cosec2θ
1 + `square` = cosec2θ
`(square + square)/square` = cosec2θ
`square/square` = cosec2θ ......[Taking root on the both side]
cosec θ = `41/9`
and sin θ = `1/("cosec" θ)`
sin θ = `1/square`
∴ sin θ = `9/41`
The value is cosec θ = `41/9`, and sin θ = `9/41`
If tan θ = `x/y`, then cos θ is equal to ______.