Advertisements
Advertisements
प्रश्न
The value of 2sinθ can be `a + 1/a`, where a is a positive number, and a ≠ 1.
पर्याय
True
False
उत्तर
This statement is False.
Explanation:
Let a = 2, then `a + 1/a = 2 + 1/2 = 5/2`
If 2sinθ = `a + 1/a`, then a
2sinθ = `5/2`
⇒ sinθ = `5/4` = 1.25
Which is not possible ...[∵ sin θ ≤ 1]
APPEARS IN
संबंधित प्रश्न
Prove that: `(1 – sinθ + cosθ)^2 = 2(1 + cosθ)(1 – sinθ)`
Prove the following trigonometric identities
cosec6θ = cot6θ + 3 cot2θ cosec2θ + 1
Prove the following identities:
`1/(secA + tanA) = secA - tanA`
Prove the following identities:
`(1 + sinA)/cosA + cosA/(1 + sinA) = 2secA`
`cos^2 theta + 1/((1+ cot^2 theta )) =1`
Write the value of `(1+ tan^2 theta ) ( 1+ sin theta ) ( 1- sin theta)`
Find the value of sin ` 48° sec 42° + cos 48° cosec 42°`
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
If x = a sec θ and y = b tan θ, then b2x2 − a2y2 =
The value of sin2 29° + sin2 61° is
Prove the following identity :
`(1 + sinA)/(1 - sinA) = (cosecA + 1)/(cosecA - 1)`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identities:
`(sec"A"-1)/(sec"A"+1)=(sin"A"/(1+cos"A"))^2`
Prove the following identity :
`cosA/(1 - tanA) + sin^2A/(sinA - cosA) = cosA + sinA`
Find the value of `θ(0^circ < θ < 90^circ)` if :
`tan35^circ cot(90^circ - θ) = 1`
Prove that `(tan^2"A")/(tan^2 "A"-1) + (cosec^2"A")/(sec^2"A"-cosec^2"A") = (1)/(1-2 co^2 "A")`
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
If tan α = n tan β, sin α = m sin β, prove that cos2 α = `(m^2 - 1)/(n^2 - 1)`.
tan θ cosec2 θ – tan θ is equal to
Show that tan4θ + tan2θ = sec4θ – sec2θ.