मराठी
महाराष्ट्र राज्य शिक्षण मंडळएस.एस.सी (इंग्रजी माध्यम) इयत्ता १० वी

Prove that: Sin4θ - cos4θ = 1 - 2cos2θ - Geometry Mathematics 2

Advertisements
Advertisements

प्रश्न

Prove that:

Sin4θ - cos4θ = 1 - 2cos2θ

बेरीज

उत्तर

Sin4θ – cos4θ = 1 – 2cos2θ

LHS = Sin4θ – cos4θ

LHS = (Sin2θ)2 – (cos2θ)2

LHS = (Sin2θ + cos2θ)(Sin2θ - cos2θ)       ...[a2 – b2 = (a + b)(a – b)]

LHS = (Sin2θ – cos2θ).(1)         ...(Sin2θ + cos2θ = 1)

LHS = 1 – cos2θ – cos2θ          ...(1 – Sin2θ = cos2θ)

LHS = 1 – 2cos2θ

RHS = 1 – 2cos2θ 

LHS = RHS

Hence proved.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 6: Trigonometry - Practice Set 6.1 [पृष्ठ १३१]

APPEARS IN

बालभारती Geometry (Mathematics 2) [English] 10 Standard SSC Maharashtra State Board
पाठ 6 Trigonometry
Practice Set 6.1 | Q 6.07 | पृष्ठ १३१

संबंधित प्रश्‍न

Prove the following trigonometric identities.

tan2θ cos2θ = 1 − cos2θ


Prove the following trigonometric identities.

`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`


Prove the following trigonometric identities.

`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`


Prove the following trigonometric identities.

if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`


Prove the following identities:

`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`


Prove that:

`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`


If tan A = n tan B and sin A = m sin B, prove that:

`cos^2A = (m^2 - 1)/(n^2 - 1)`


If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2


Prove the following identity :

 ( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ) 


Prove the following identity : 

`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`


Prove the following identity :

`1/(tanA + cotA) = sinAcosA`


Prove the following identity :

`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`


If cosθ = `5/13`, then find sinθ. 


Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.


Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .


Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`


Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`


Prove that sin6A + cos6A = 1 – 3sin2A . cos2A


If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.


If 5 tan β = 4, then `(5  sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×