Advertisements
Advertisements
प्रश्न
Prove that:
Sin4θ - cos4θ = 1 - 2cos2θ
उत्तर
Sin4θ – cos4θ = 1 – 2cos2θ
LHS = Sin4θ – cos4θ
LHS = (Sin2θ)2 – (cos2θ)2
LHS = (Sin2θ + cos2θ)(Sin2θ - cos2θ) ...[a2 – b2 = (a + b)(a – b)]
LHS = (Sin2θ – cos2θ).(1) ...(Sin2θ + cos2θ = 1)
LHS = 1 – cos2θ – cos2θ ...(1 – Sin2θ = cos2θ)
LHS = 1 – 2cos2θ
RHS = 1 – 2cos2θ
LHS = RHS
Hence proved.
संबंधित प्रश्न
Prove the following trigonometric identities.
tan2θ cos2θ = 1 − cos2θ
Prove the following trigonometric identities.
`tan theta - cot theta = (2 sin^2 theta - 1)/(sin theta cos theta)`
Prove the following trigonometric identities.
`(1 + cos theta + sin theta)/(1 + cos theta - sin theta) = (1 + sin theta)/cos theta`
Prove the following trigonometric identities.
if `T_n = sin^n theta + cos^n theta`, prove that `(T_3 - T_5)/T_1 = (T_5 - T_7)/T_3`
Prove the following identities:
`(1+ sin A)/(cosec A - cot A) - (1 - sin A)/(cosec A + cot A) = 2(1 + cot A)`
Prove that:
`(cosecA - sinA)(secA - cosA) = 1/(tanA + cotA)`
If tan A = n tan B and sin A = m sin B, prove that:
`cos^2A = (m^2 - 1)/(n^2 - 1)`
If a cos θ + b sin θ = 4 and a sin θ − b sin θ = 3, then a2 + b2 =
Prove the following identity :
( 1 + cotθ - cosecθ) ( 1 + tanθ + secθ)
Prove the following identity :
`(secA - 1)/(secA + 1) = (1 - cosA)/(1 + cosA)`
Prove the following identity :
`1/(tanA + cotA) = sinAcosA`
Prove the following identity :
`(cot^2θ(secθ - 1))/((1 + sinθ)) = sec^2θ((1-sinθ)/(1 + secθ))`
If cosθ = `5/13`, then find sinθ.
Prove that `sqrt(2 + tan^2 θ + cot^2 θ) = tan θ + cot θ`.
Prove that `( 1 + sin θ)/(1 - sin θ) = 1 + 2 tan θ/cos θ + 2 tan^2 θ` .
Prove that `(tan θ + sin θ)/(tan θ - sin θ) = (sec θ + 1)/(sec θ - 1)`
Prove that `(cos(90 - "A"))/(sin "A") = (sin(90 - "A"))/(cos "A")`
Prove that sin6A + cos6A = 1 – 3sin2A . cos2A
If sinθ = `11/61`, then find the value of cosθ using the trigonometric identity.
If 5 tan β = 4, then `(5 sin β - 2 cos β)/(5 sin β + 2 cos β)` = ______.